Acknowledgement
Supported by : Guangdong Natural Science Foundation
References
- Cui, W.C., Cai, X.G. and Leng, J.X. (1998), "A State-of-the-Art review for the fatigue strength assessment of ship structures", J. Ship Mech., 2(4), 63-81.
- Na, S.S. and Karr, D.G. (2013), "An efficient stiffness method for the optimum design of ship structures based on common structural rules", Ship. Offshore Struct., 8(1), 29-44. https://doi.org/10.1080/17445302.2012.669213
- Norwood, M.N. and Dow, R.S. (2013), "Dynamic analysis of ship structures", Ship. Offshore Struct., 8(3-4), 270-88. https://doi.org/10.1080/17445302.2012.755285
- Senjanovic, I., Hadzic, N. and Bigot F. (2013), "Finite element formulation of different restoring stiffness issues in the ship hydroelastic analysis and their influence on response", Ocean Eng., 59, 198-213. https://doi.org/10.1016/j.oceaneng.2012.12.026
- Tezduyar, T. (2003), "Computation of moving boundaries and interfaces and stabilization parameters", Int. J. Numer. Meth. Fluid., 43, 555-575. https://doi.org/10.1002/fld.505
- Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), "Meshless methods: An overview and recent developments", Comput. Meth. Appl. Mech. Eng., 139, 3-47. https://doi.org/10.1016/S0045-7825(96)01078-X
- Liu, W.K., Hao, S., Belytschko, T., Li, S. and Chang, C.T. (1999), "Multiple scale meshless methods for damage fracture and localization", Comput. Mater. Sci., 16, 197-206. https://doi.org/10.1016/S0927-0256(99)00062-2
- Atluri, S.N. and Shen, S. (2005), "The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method", Adv. Comput. Math., 23, 73-93. https://doi.org/10.1007/s10444-004-1813-9
- Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new could-based hp finite element method", Int. J. Numer. Meth. Eng., 50, 160-170.
- Liu, G.R. and Gu, Y.T. (2000), "Meshless local Petrov-Galerkin method in combination with finite element and boundary element approaches", Comput. Mech., 26, 536-646. https://doi.org/10.1007/s004660000203
- He, P.X., Li, Z.X. and Wu, C.C. (2006), "Coupled finite element-element-free Galerkin method for dynamic fracture", Chin. J. Appl. Mech., 23(2), 195-198.
- Duan, N., Wang, W.S., Yu, Y.Q., Huang, H. and Xu, X.P. (2013), "Dynamic simulation of single grain cutting of glass by coupling FEM and SPH", Chin. Mech. Eng., 24(20), 2716-2721.
- Johnson, G.R., Stryk, R.A., Beissel, S.R. and Holmquist, T.J. (2002), "An algorithm to automatically convert distorted finite element into meshless particles during dynamic deformation", Int. J. Impact Eng., 27, 997-1013. https://doi.org/10.1016/S0734-743X(02)00030-1
- Liu, G.R. (2003), Meshfree Methods Moving Beyond the Finite Element Method, CRC Press.
- Atluri, S.N. and Zhu T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Computat. Mech., 22, 117-179. https://doi.org/10.1007/s004660050346
- Zienkiewicz, O.C. (1989), The Finite Element Method, 4th Edition, McGraw-Hill, London.
- Yang, Y.Y. and Li, J. (2005), "A study of weight function in elemen-t free Galerkin method", J. Plast. Eng., 12(4), 5-9.
- Chen, J.P., Tang, W.Y. and Xu, M.P. (2015), "A mesh-free analysis of the Ship Structures Based on Daubechies Wavelet Basis theory", J. Inform. Comput. Sci., 12(5), 1675-1684. https://doi.org/10.12733/jics20105581
- Long, S.Y. and Hu, D. (2003), "A study on the weighted function of the moving square approximation in the local boundary integral equation method", Acta Mechanica Sinica, 16(3), 276-282.
- Mallat, S. (1989), "Multiresolution approximations and wavelet orthonormal bases of L2(r)", Tran. Am. Math. Soc., 315, 69-87.
- Qin, R. (2012), Spline Meshless Method, Science Press, Beijing, China.
- Cui, C.K. and Quak E. (1993), "Wavelets on a bounded interval", Numer. Meth. Approx. Theor., 1993(1), 53-57.
- Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing Kernel Particle Methods for large deformation analysis of nonlinear structures", Comput. Meth. Appl. Mech. Eng, 139, 195-229. https://doi.org/10.1016/S0045-7825(96)01083-3
Cited by
- Heat transfer analysis of fast response sensor for internal combustion engine based on Coiflet wavelet finite element method vol.129, pp.2, 2017, https://doi.org/10.1007/s10973-017-6285-5