References
- Gronberg H. Prostate cancer epidemiology. Lancet 2003;361:859-64. https://doi.org/10.1016/S0140-6736(03)12713-4
- Bidoli E, Talamini R, Bosetti C, Negri E, Maruzzi D, Montella M, Franceschi S, La Vecchia C. Macronutrients, fatty acids, cholesterol and prostate cancer risk. Ann Oncol 2005;16:152-7. https://doi.org/10.1093/annonc/mdi010
- Garnick MB, Fair WR. Combating prostate cancer. Sci Am 1998;279:74-83. https://doi.org/10.1038/scientificamerican1298-74
- Kyle E, Neckers L, Takimoto C, Curt G, Bergan R. Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol Pharmacol 1997;51:193-200. https://doi.org/10.1124/mol.51.2.193
- Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science 1997;278:1073-7. https://doi.org/10.1126/science.278.5340.1073
- Belaiche P, Lievoux O. Clinical studies on the palliative treatment of prostatic adenoma with extract of Urtica root. Phytother Res 1991;5:267-9. https://doi.org/10.1002/ptr.2650050608
- Bhanot A, Sharma R, Noolvi MN. Natural sources as potential anti-cancer agents: a review. Int J Phytomedicine 2011;3:9-26.
- Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod 2007;70:461-77. https://doi.org/10.1021/np068054v
- Lee HW, Jang KS, Choi HJ, Jo A, Cheong JH, Chun KH. Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy. BMB Rep. 2014;47:697-702. https://doi.org/10.5483/BMBRep.2014.47.12.069
- Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
- Kang KS, Yokozawa T, Yamabe N, Kim HY, Park JH. ESR study on the structure and hydroxyl radical-scavenging activity relationships of ginsenosides isolated from Panax ginseng C A Meyer. Biol Pharm Bull 2007;30:917-21. https://doi.org/10.1248/bpb.30.917
- Kim YJ, Yamabe N, Choi P, Lee JW, Ham J, Kang KS. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J Agric Food Chem 2013;61:9185-91. https://doi.org/10.1021/jf402774d
- Choi P, Park JY, Kim T, Park SH, Kim H, Kang KS, Ham J. Improved anticancer effect of ginseng extract by microwave-assisted processing through the generation of ginsenosides Rg3, Rg5 and Rk1. J Funct Foods 2015;14:613-22. https://doi.org/10.1016/j.jff.2015.02.038
- Yamabe N, Kim YJ, Lee S, Cho EJ, Park SH, Ham J, Kim HY, Kang KS. Increase in antioxidant and anticancer effects of ginsenoside Re-lysine mixture by Maillard reaction. Food Chem 2013;138:876-83. https://doi.org/10.1016/j.foodchem.2012.12.004
- Jang HJ, Han IH, Kim YJ, Yamabe N, Lee D, Hwang GS, Oh M, Choi KC, Kim SN, Ham J, et al. Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells. J Agric Food Chem 2014;62:2830-6. https://doi.org/10.1021/jf5000776
- Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, Kim HS, Hyun JW. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis 2013;4:e750. https://doi.org/10.1038/cddis.2013.273
- Kim DG, Jung KH, Lee DG, Yoon JH, Choi KS, Kwon SW, Shen HM, Morgan MJ, Hong SS, Kim YS. 20(S)-Ginsenoside Rg3 is a novel inhibitor of autophagy and sensitizes hepatocellular carcinoma to doxorubicin. Oncotarget 2014;5:4438-51. https://doi.org/10.18632/oncotarget.2034
- Liang LD, He T, Du TW, Fan YG, Chen DS, Wang Y. Ginsenoside Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol Med Rep 2015;11:940-6. https://doi.org/10.3892/mmr.2014.2821
- Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011;10:1533-41. https://doi.org/10.1158/1535-7163.MCT-11-0047
- Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 2011;19:664-78. https://doi.org/10.1016/j.ccr.2011.04.010
- Barzilai A, Rotman G, Shiloh Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair(Amst) 2002;22:3-25.
- Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 2007;43:332-47. https://doi.org/10.1016/j.freeradbiomed.2007.03.027
- Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal 2008;10:1883-94. https://doi.org/10.1089/ars.2008.2114
- Jang JH, Cho YC, Kim KH, Lee KS, Lee J, Kim DE, Park JS, Jang BC, Kim S, Kwon TK, et al. BAI, a novel Cdk inhibitor, enhances farnesyltransferase inhibitor LB42708-mediated apoptosis in renal carcinoma cells through the downregulation of Bcl-2 and c-FLIP (L). Int J Oncol 2014;45:1680-90. https://doi.org/10.3892/ijo.2014.2534
- Murphy LL, Rice JA, Zong W. Ginsenosides Rc and Rh2 inhibit MCF-7 cell proliferation through distinctly different mechanisms. Mol Biol Cell 2001;12(Suppl):764.
- Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, Kim DK, Kim ND. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol 1999;14:869-75.
- Park JA, Lee KY, Oh YJ, Kim KW, Lee SK. Activation of caspase-3-protease via a Bcl-2-insensitive pathway during the process of ginsenoside Rh2-induced apoptosis. Cancer Lett 1997;121:73-81. https://doi.org/10.1016/S0304-3835(97)00333-9
- Clingen PH, Wu JY, Miller J, Mistry N, Chin F, Wynne P, Prise KM, Hartley JA. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem Pharmacol 2008;76:19-27. https://doi.org/10.1016/j.bcp.2008.03.025
- Mah LJ, El-Osta A, Karagiannis TC. GammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010;24:679-86. https://doi.org/10.1038/leu.2010.6
- Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 2009;458:591-6. https://doi.org/10.1038/nature07849
- Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 2011;8:528-39. https://doi.org/10.1038/nrclinonc.2011.71
Cited by
- Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats vol.41, pp.2, 2016, https://doi.org/10.1016/j.jgr.2016.03.001
-
Modified Ginseng Extract Induces Apoptosis in HepG2 Cancer Cells by Blocking the CXCL8-Mediated Akt/Nuclear Factor-
$ \kappa $ B Signaling Pathway vol.46, pp.7, 2016, https://doi.org/10.1142/s0192415x18500842 - Applicability of Sunsik with Cultivated Wild Ginseng Powder as a Beauty Food vol.16, pp.2, 2016, https://doi.org/10.20402/ajbc.2017.0176
- Production of Minor Ginenosides from Panax notoginseng by Microwave Processing Method and Evaluation of Their Blood-Enriching and Hemostatic Activity vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061243
- Beneficial Effects of Deoxyshikonin on Delayed Wound Healing in Diabetic Mice vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113660
- Converting ginsenosides from stems and leaves of Panax notoginseng by microwave processing and improving their anticoagulant and anticancer activities vol.8, pp.70, 2016, https://doi.org/10.1039/c8ra08021f
- Ginsenoside Rb1, A Major Saponin from Panax ginseng , Exerts Protective Effects Against Acetaminophen-Induced Hepatotoxicity in Mice vol.47, pp.8, 2016, https://doi.org/10.1142/s0192415x19500927
- Changes in chemical components and antitumor activity during the heating process of Fructus Arctii vol.57, pp.1, 2016, https://doi.org/10.1080/13880209.2019.1616778
- Sense Ginsenosides From Ginsengs: Structure-Activity Relationship in Autophagy vol.14, pp.6, 2019, https://doi.org/10.1177/1934578x19858223
- The content of triterpene saponins and phenolic compounds in American ginseng hairy root extracts and their antioxidant and cytotoxic properties vol.138, pp.2, 2019, https://doi.org/10.1007/s11240-019-01633-3
- Boronate affinity mesoporous silica nanoparticle based selective enrichment for highly efficient analysis of ginsenosides vol.11, pp.44, 2019, https://doi.org/10.1039/c9ay01913h
- Ginsenoside Rg3 attenuates the osimertinib resistance by reducing the stemness of non‐small cell lung cancer cells vol.35, pp.6, 2016, https://doi.org/10.1002/tox.22899
- Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
- In Vitro Evaluation of Anti-Lung Cancer and Anti-COVID-19 Effects using Fermented Black Color Ginseng Extract vol.16, pp.9, 2016, https://doi.org/10.1177/1934578x211034387
- The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research vol.119, pp.None, 2022, https://doi.org/10.1016/j.tifs.2021.11.011