DOI QR코드

DOI QR Code

Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction

  • Chun, Sung Kook (Department of Surgery, University of Florida) ;
  • Go, Kristina (Department of Surgery, University of Florida) ;
  • Yang, Ming-Jim (Department of Surgery, University of Florida) ;
  • Zendejas, Ivan (Department of Surgery, University of Florida) ;
  • Behrns, Kevin E. (Department of Surgery, University of Florida) ;
  • Kim, Jae-Sung (Department of Surgery, University of Florida)
  • 투고 : 2015.12.06
  • 심사 : 2015.12.29
  • 발행 : 2016.01.15

초록

No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.

키워드

참고문헌

  1. Mizushima, N., Levine, B., Cuervo, A.M. and Klionsky, D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-1075. https://doi.org/10.1038/nature06639
  2. Mizushima, N. and Klionsky, D.J. (2007) Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr., 27, 19-40. https://doi.org/10.1146/annurev.nutr.27.061406.093749
  3. Lemasters, J.J. (2014) Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol., 2, 749-754. https://doi.org/10.1016/j.redox.2014.06.004
  4. Cursio, R., Colosetti, P. and Gugenheim, J. (2015) Autophagy and liver ischemia-reperfusion injury. Biomed Res Int., 2015, 417590.
  5. Kim, J.S., Nitta, T., Mohuczy, D., O'Malley, K.A., Moldawer, L.L., Dunn, W.A. Jr. and Behrns, K.E. (2008) Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology, 47, 1725-1736. https://doi.org/10.1002/hep.22187
  6. Blumgart, L.H. and Hann, L.E. (2012) Surgical and Radiological Anatomy of the Liver, Biliary Tract and Pancreas, Blumgart's Surgery of the Liver, Biliary tract and Pancreas (5th Edition). Elsevier, Philadelphia, pp. 31.
  7. Arias, I.M., Alter, H.J, Boyer, J.L., Cohen, D.E., Fausto, N., Shafritz, D.A. and Wolkoff, A.W. (2009) The liver: Biology and pathobiology (5th Edition). Wiley-Blackwell, New Jersey.
  8. Bradley, S.E., Ingelfinger, F.J., Bradley, G.P. and Curry, J.J. (1945) The estimation of hepatic blood flow in man. J. Clin. Invest., 24, 890-897. https://doi.org/10.1172/JCI101676
  9. Bradford, B.U., Marotto, M., Lemasters, J.J. and Thurman, R.G. (1986) New, simple models to evaluate zone-specific damage due to hypoxia in the perfused rat liver: time course and effect of nutritional state. J. Pharmacol. Exp. Ther., 236, 263-268.
  10. Malhi, H., Gores, G.J. and Lemasters, J.J. (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology, 43, S31-44. https://doi.org/10.1002/hep.21062
  11. World Health Organization (WHO). (2013) Study of liver disease mortality.
  12. Mokdad, A.A., Lopez, A.D., Shahraz, S., Lozano, R., Mokdad, A.H., Stanaway, J., Murray, C.J. and Naghavi, M. (2014) Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med., 12, 145. https://doi.org/10.1186/s12916-014-0145-y
  13. Tang, L., Tian, F., Tao, W. and Cui, J. (2007) Hepatocellular glycogen in alleviation of liver ischemia-reperfusion injury during partial hepatectomy. World J. Surg., 31, 2039-2043. https://doi.org/10.1007/s00268-007-9186-0
  14. Lemasters, J.J., Caldwell-Kenkel, J.C., Gao, W., Nieminen, A.L., Herman, B. and Thurman, R.G. (1992) Hypoxic, ischemic and reperfusion injury in the liver in Pathophysiology of Reperfusion Injury (Das, D.K. edition). CRC, Florida, pp. 101-135.
  15. Bronk, S.F. and Gores, G.J. (1991) Efflux of protons from acidic vesicles contributes to cytosolic acidification of hepatocytes during ATP depletion. Hepatology, 14, 626-633. https://doi.org/10.1002/hep.1840140409
  16. Kim, J.S., He, L. and Lemasters, J.J. (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 304, 463-470. https://doi.org/10.1016/S0006-291X(03)00618-1
  17. United Network for Organ Sharing (UNOS). (2014).
  18. Kim, J.S., Qian, T. and Lemasters, J.J. (2003) Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology, 124, 494-503. https://doi.org/10.1053/gast.2003.50059
  19. Leung, A.W. and Halestrap, A.P. (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim. Biophys. Acta, 1777, 946-952. https://doi.org/10.1016/j.bbabio.2008.03.009
  20. Hausenloy, D., Wynne, A., Duchen, M. and Yellon, D. (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation, 109, 1714-1717. https://doi.org/10.1161/01.CIR.0000126294.81407.7D
  21. He, L. and Lemasters, J.J. (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett., 512, 1-7. https://doi.org/10.1016/S0014-5793(01)03314-2
  22. Akhtar, M.Z., Henderson, T., Sutherland, A., Vogel, T. and Friend, P.J. (2013) Novel approaches to preventing ischemiareperfusion injury during liver transplantation. Transplant. Proc., 45, 2083-2092. https://doi.org/10.1016/j.transproceed.2013.04.004
  23. Yamashita, Y., Shimada, M., Hamatsu, T., Rikimaru, T., Tanaka, S., Shirabe, K. and Sugimachi, K. (2001) Effects of preoperative steroid administration on surgical stress in hepatic resection: prospective randomized trial. Arch. Surg., 136, 328-333. https://doi.org/10.1001/archsurg.136.3.328
  24. Pan, L.J., Zhang, Z.C., Zhang, Z.Y., Wang, W.J., Xu, Y. and Zhang, Z.M. (2012) Effects and mechanisms of store-operated calcium channel blockade on hepatic ischemia-reperfusion injury in rats. World J. Gastroenterol., 18, 356-367. https://doi.org/10.3748/wjg.v18.i4.356
  25. Gurusamy, K.S., Gonzalez, H.D. and Davidson, B.R. (2010) Current protective strategies in liver surgery. World J. Gastroenterol., 16, 6098-6103. https://doi.org/10.3748/wjg.v16.i48.6098
  26. Uchida, M., Takemoto, Y., Nagasue, N., Dhar, D.K., Kohno, H. and Nakamura, T. (1994) Effect of verapamil on hepatic reperfusion injury after prolonged ischemia in pigs. J. Hepatol., 21, 217-223. https://doi.org/10.1016/S0168-8278(05)80398-8
  27. Kon, K., Kim, J.S., Jaeschke, H. and Lemasters, J.J. (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology, 40, 1170-1179. https://doi.org/10.1002/hep.20437
  28. Kim, J.S., Jin, Y. and Lemasters, J.J. (2006) Reactive oxygen species, but not $Ca^{2+}$ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol., 290, H2024-H2034. https://doi.org/10.1152/ajpheart.00683.2005
  29. Klionsky, D.J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 8, 931-937. https://doi.org/10.1038/nrm2245
  30. Codogno, P., Mehrpour, M. and Proikas-Cezanne, T. (2011) Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol., 13, 7-12. https://doi.org/10.1038/nrn3125
  31. Dunn, W.A. Jr., Cregg, J.M., Kiel, J.A., van der Klei, I.J., Oku, M., Sakai, Y., Sibirny, A.A., Stasyk, O.V. and Veenhuis, M. (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy, 1, 75-83. https://doi.org/10.4161/auto.1.2.1737
  32. Kraft, C., Deplazes, A., Sohrmann, M. and Peter, M. (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol., 10, 602-610. https://doi.org/10.1038/ncb1723
  33. Hamasaki, M., Noda, T., Baba, M. and Ohsumi, Y. (2005) Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic, 6, 56-65. https://doi.org/10.1111/j.1600-0854.2004.00245.x
  34. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M. and Czaja, M.J. (2009) Autophagy regulates lipid metabolism. Nature, 458, 1131-1135. https://doi.org/10.1038/nature07976
  35. Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 509, 105-109. https://doi.org/10.1038/nature13148
  36. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D.C. and Ballabio, A. (2011) TFEB links autophagy to lysosomal biogenesis. Science, 332, 1429-1433. https://doi.org/10.1126/science.1204592
  37. Rabinowitz, J.D. and White, E. (2010) Autophagy and metabolism. Science, 330, 1344-1348. https://doi.org/10.1126/science.1193497
  38. Kim, J., Kundu, M., Viollet, B. and Guan, K.L. (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 13, 132-141. https://doi.org/10.1038/ncb2152
  39. Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., Guan, J.L., Oshiro, N. and Mizushima, N. (2009) Nutrientdependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell, 20, 1981-1991. https://doi.org/10.1091/mbc.E08-12-1248
  40. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L. and Mizushima, N. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol., 181, 497-510. https://doi.org/10.1083/jcb.200712064
  41. Jung, C.H., Seo, M., Otto, N.M. and Kim, D.H. (2011) ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy, 7, 1212-1221. https://doi.org/10.4161/auto.7.10.16660
  42. Dai, D.F., Johnson, S.C., Villarin, J.J., Chin, M.T., Nieves-Cintron, M., Chen, T., Marcinek, D.J., Dorn, G.W., Kang, Y.J., Prolla, T.A., Santana, L.F. and Rabinovitch, P.S. (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ. Res., 108, 837-846. https://doi.org/10.1161/CIRCRESAHA.110.232306
  43. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. and Levine, B. (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell, 30, 678-688. https://doi.org/10.1016/j.molcel.2008.06.001
  44. Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A. and Guan, K.L. (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol., 15, 741-750. https://doi.org/10.1038/ncb2757
  45. Backer, J.M. (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem. J., 410, 1-17.
  46. Obara, K. and Ohsumi, Y. (2011) Atg14: a key player in orchestrating autophagy. Int. J. Cell Biol., 2011, 713435.
  47. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B.H. and Jung, J.U. (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol., 8, 688-699. https://doi.org/10.1038/ncb1426
  48. Takahashi, Y., Coppola, D., Matsushita, N., Cualing, H.D., Sun, M., Sato, Y., Liang, C., Jung, J.U., Cheng, J.Q., Mule, J.J., Pledger, W.J. and Wang, H.G. (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol., 9, 1142-1151. https://doi.org/10.1038/ncb1634
  49. Itakura, E., Kishi, C., Inoue, K. and Mizushima, N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell, 19, 5360-5372. https://doi.org/10.1091/mbc.E08-01-0080
  50. Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., Akira, S., Noda, T. and Yoshimori, T. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol., 11, 385-396. https://doi.org/10.1038/ncb1846
  51. Mizushima, N., Yoshimori, T. and Ohsumi, Y. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
  52. Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., Massey, D.C., Menzies, F.M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F.H., Underwood, B.R., Winslow, A.R. and Rubinsztein, D.C. (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 90, 1383-1435. https://doi.org/10.1152/physrev.00030.2009
  53. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell, 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  54. Levine, B. and Klionsky, D.J. (2004) Development by selfdigestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 6, 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
  55. Chua, C.E., Gan, B.Q. and Tang, B.L. (2011) Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell. Mol. Life Sci., 68, 3349-3358. https://doi.org/10.1007/s00018-011-0748-9
  56. Ao, X., Zou, L. and Wu, Y. (2014) Regulation of autophagy by the Rab GTPase network. Cell Death Differ., 21, 348-358. https://doi.org/10.1038/cdd.2013.187
  57. Moreau, K., Renna, M. and Rubinsztein, D.C. (2013) Connections between SNAREs and autophagy. Trends Biochem. Sci., 38, 57-63. https://doi.org/10.1016/j.tibs.2012.11.004
  58. Weber, T., Zemelman, B.V., McNew, J.A., Westermann, B., Gmachl, M., Parlati, F., Sollner, T.H. and Rothman, J.E. (1998) SNAREpins: minimal machinery for membrane fusion. Cell, 92, 759-772. https://doi.org/10.1016/S0092-8674(00)81404-X
  59. Menzies, R.A. and Gold, P.H. (1971) The turnover of mitochondria in a variety of tissues of young adult and aged rats. J. Biol. Chem., 246, 2425-2429.
  60. Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H., Renton, A.E., Harvey, R.J., Whitworth, A.J., Martins, L.M., Abramov, A.Y. and Wood, N.W. (2011) PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet., 20, 867-879. https://doi.org/10.1093/hmg/ddq526
  61. Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J. and Springer, W. (2010) PINK1/Parkinmediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol., 12, 119-131. https://doi.org/10.1038/ncb2012
  62. Michiorri, S., Gelmetti, V., Giarda, E., Lombardi, F., Romano, F., Marongiu, R., Nerini-Molteni, S., Sale, P., Vago, R., Arena, G., Torosantucci, L., Cassina, L., Russo, M.A., Dallapiccola, B., Valente, E.M. and Casari, G. (2010) The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ., 17, 962-974. https://doi.org/10.1038/cdd.2009.200
  63. Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., Shiba-Fukushima, K., Sato, S., Shimizu, H., Fukunaga, Y., Taniguchi, H., Komatsu, M., Hattori, N., Mihara, K., Tanaka, K. and Matsuda, N. (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun., 3, 1016. https://doi.org/10.1038/ncomms2016
  64. Kirkin, V., McEwan, D.G., Novak, I. and Dikic, I. (2009) A role for ubiquitin in selective autophagy. Mol. Cell, 34, 259-269. https://doi.org/10.1016/j.molcel.2009.04.026
  65. Narendra, D., Tanaka, A., Suen, D.F. and Youle, R.J. (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy, 5, 706-708. https://doi.org/10.4161/auto.5.5.8505
  66. Feng, D., Liu, L., Zhu, Y. and Chen, Q. (2013) Molecular signaling toward mitophagy and its physiological significance. Exp. Cell Res., 319, 1697-1705. https://doi.org/10.1016/j.yexcr.2013.03.034
  67. Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., Huang, L., Xue, P., Li, B., Wang, X., Jin, H., Wang, J., Yang, F., Liu, P., Zhu, Y., Sui, S. and Chen, Q. (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol., 14, 177-185. https://doi.org/10.1038/ncb2422
  68. Wu, W., Tian, W., Hu, Z., Chen, G., Huang, L., Li, W., Zhang, X., Xue, P., Zhou, C., Liu, L., Zhu, Y., Zhang, X., Li, L., Zhang, L., Sui, S., Zhao, B. and Feng, D. (2014) ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep., 15, 566-575. https://doi.org/10.1002/embr.201438501
  69. Chen, M., Sandoval, H. and Wang, J. (2008) Selective mitochondrial autophagy during erythroid maturation. Autophagy, 4, 926-928. https://doi.org/10.4161/auto.6716
  70. Sandoval, H., Thiagarajan, P., Dasgupta, S.K., Schumacher, A., Prchal, J.T., Chen, M. and Wang, J. (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature, 454, 232-235. https://doi.org/10.1038/nature07006
  71. Wang, J.H., Ahn, I.S., Fischer, T.D., Byeon, J.I., Dunn, W.A. Jr., Behrns, K.E., Leeuwenburgh, C. and Kim, J.S. (2011) Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology, 141, 2188-2199. https://doi.org/10.1053/j.gastro.2011.08.005
  72. Kim, J.S., Wang, J.H., Biel, T.G., Kim, D.S., Flores-Toro, J.A., Vijayvargiya, R., Zendejas, I. and Behrns, K.E. (2013) Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers. Toxicol. Appl. Pharmacol., 273, 600-610. https://doi.org/10.1016/j.taap.2013.10.006
  73. Pacher, P. and Hajnoczky, G. (2001) Propagation of the apoptotic signal by mitochondrial waves. EMBO J., 20, 4107-4121. https://doi.org/10.1093/emboj/20.15.4107
  74. Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E. and Mann, M. (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol., 15, 536-550.
  75. Lee, K.K. and Workman, J.L. (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol., 8, 284-295. https://doi.org/10.1038/nrm2145
  76. Haigis, M.C. and Guarente, L.P. (2006) Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev., 20, 2913-2921. https://doi.org/10.1101/gad.1467506
  77. North, B.J. and Verdin, E. (2004) Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol., 5, 224. https://doi.org/10.1186/gb-2004-5-5-224
  78. Michan, S. and Sinclair, D. (2007) Sirtuins in mammals: insights into their biological function. Biochem. J., 404, 1-13. https://doi.org/10.1042/BJ20070140
  79. Houtkooper, R.H., Pirinen, E. and Auwerx, J. (2012) Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 13, 225-238. https://doi.org/10.1038/nrn3209
  80. Anderson, K.A., Green, M.F., Huynh, F.K., Wagner, G.R. and Hirschey, M.D. (2014) SnapShot: Mammalian Sirtuins. Cell, 159, 956. https://doi.org/10.1016/j.cell.2014.10.045
  81. Finnin, M.S., Donigian, J.R. and Pavletich, N.P. (2001) Structure of the histone deacetylase SIRT2. Nat. Struct. Biol., 8, 621-625. https://doi.org/10.1038/89668
  82. Min, J., Landry, J., Sternglanz, R. and Xu, R.M. (2001) Crystal structure of a SIR2 homolog-NAD complex. Cell, 105, 269-279. https://doi.org/10.1016/S0092-8674(01)00317-8
  83. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F. and Kroemer, G. (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab., 21, 805-821. https://doi.org/10.1016/j.cmet.2015.05.014
  84. Marino, G., Pietrocola, F., Eisenberg, T., Kong, Y., Malik, S.A., Andryushkova, A., Schroeder, S., Pendl, T., Harger, A., Niso-Santano, M., Zamzami, N., Scoazec, M., Durand, S., Enot, D.P., Fernandez, A.F., Martins, I., Kepp, O., Senovilla, L., Bauvy, C., Morselli, E., Vacchelli, E., Bennetzen, M., Magnes, C., Sinner, F., Pieber, T., Lopez-Otin, C., Maiuri, M.C., Codogno, P., Andersen, J.S., Hill, J.A., Madeo, F. and Kroemer, G. (2014) Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell, 53, 710-725. https://doi.org/10.1016/j.molcel.2014.01.016
  85. Lombard, D.B., Tishkoff, D.X. and Bao, J. (2011) Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation in Histone Deacetylases: the Biology and Clinical Implication (Yao, T.P. and Seto, E. Edition). Springer, Heidelberg, pp. 163-188.
  86. Satoh, A., Stein, L. and Imai, S. (2011) The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity in Histone Deacetylases: the Biology and Clinical Implication (Yao, T.P. and Seto, E. Edition). Springer, Heidelberg, pp. 126-163.
  87. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y. (2007) Nucleocytoplasmic shuttling of the $NAD^+$-dependent histone deacetylase SIRT1. J. Biol. Chem., 282, 6823-6832. https://doi.org/10.1074/jbc.M609554200
  88. Asher, G., Gatfield, D., Stratmann, M., Reinke, H., Dibner, C., Kreppel, F., Mostoslavsky, R., Alt, F.W. and Schibler, U. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell, 134, 317-328. https://doi.org/10.1016/j.cell.2008.06.050
  89. Belden, W.J. and Dunlap, J.C. (2008) SIRT1 is a circadian deacetylase for core clock components. Cell, 134, 212-214. https://doi.org/10.1016/j.cell.2008.07.010
  90. Nakahata, Y., Kaluzova, M., Grimaldi, B., Sahar, S., Hirayama, J., Chen, D., Guarente, L.P. and Sassone-Corsi, P. (2008) The $NAD^+$-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control. Cell, 134, 329-340. https://doi.org/10.1016/j.cell.2008.07.002
  91. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W. and Finkel, T. (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U.S.A., 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
  92. Hariharan, N., Maejima, Y., Nakae, J., Paik, J., Depinho, R.A. and Sadoshima, J. (2010) Deacetylation of FoxO by Sirt1 Plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res., 107, 1470-1482. https://doi.org/10.1161/CIRCRESAHA.110.227371
  93. Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L. and Bohr, V.A. (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and $NAD^+$/SIRT1 reduction. Cell, 157, 882-896. https://doi.org/10.1016/j.cell.2014.03.026
  94. Jang, S.Y., Kang, H.T. and Hwang, E.S. (2012) Nicotinamide-induced mitophagy: event mediated by high $NAD^+$/ NADH ratio and SIRT1 protein activation. J. Biol. Chem., 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
  95. Rickenbacher, A., Jang, J.H., Limani, P., Ungethum, U., Lehmann, K., Oberkofler, C.E., Weber, A., Graf, R., Humar, B. and Clavien, P.A. (2014) Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice. J. Hepatol., 61, 301-308. https://doi.org/10.1016/j.jhep.2014.04.010
  96. Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z. and Puigserver, P. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J., 26, 1913-1923. https://doi.org/10.1038/sj.emboj.7601633
  97. Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M. and Puigserver, P. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434, 113-118. https://doi.org/10.1038/nature03354
  98. Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab., 9, 327-338. https://doi.org/10.1016/j.cmet.2009.02.006
  99. Aquilano, K., Vigilanza, P., Baldelli, S., Pagliei, B., Rotilio, G. and Ciriolo, M.R. (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem., 285, 21590-21599. https://doi.org/10.1074/jbc.M109.070169
  100. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  101. Garcia-Rodriguez, J.L., Barbier-Torres, L., Fernandez-Alvarez, S., Gutierre-de Juan, V., Monte, M.J., Halilbasic, E., Herranz, D., Alvarez, L., Aspichueta, P., Marin, J.J., Trauner, M., Mato, J.M., Serrano, M., Beraza, N. and Martinez-Chantar, M.L. (2014) SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology, 59, 1972-1983. https://doi.org/10.1002/hep.26971
  102. Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., Yeatman, T., Coppola, D. and Chen, J. (2009) SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem., 284, 18210-18217. https://doi.org/10.1074/jbc.M109.000034
  103. Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W. and Chua, K.F. (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. U.S.A., 100, 10794-10799. https://doi.org/10.1073/pnas.1934713100
  104. Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D.J., Cole, P., Yates, J. 3rd., Olefsky, J., Guarente, L. and Montminy, M. (2008) A fasting inducible switch modulates gluconeogenesis via activator/ coactivator exchange. Nature, 456, 269-273. https://doi.org/10.1038/nature07349
  105. Park, J.M., Kim, T.H., Bae, J.S., Kim, M.Y., Kim, K.S. and Ahn, Y.H. (2010) Role of resveratrol in FOXO1-mediated gluconeogenic gene expression in the liver. Biochem. Biophys. Res. Commun., 403, 329-334. https://doi.org/10.1016/j.bbrc.2010.11.028
  106. Li, Y., Wong, K., Giles, A., Jiang, J., Lee, J.W., Adams, A.C., Kharitonenkov, A., Yang, Q., Gao, B., Guarente, L. and Zang, M. (2014) Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology, 146, 539-549. https://doi.org/10.1053/j.gastro.2013.10.059
  107. Nie, Y., Erion, D.M., Yuan, Z., Dietrich, M., Shulman, G.I., Horvath, T.L. and Gao, Q. (2009) STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol., 11, 492-500. https://doi.org/10.1038/ncb1857
  108. Schwer, B., Eckersdorff, M., Li, Y., Silva, J.C., Fermin, D., Kurtev, M.V., Giallourakis, C., Comb, M.J., Alt, F.W. and Lombard, D.B. (2009) Calorie restriction alters mitochondrial protein acetylation. Aging Cell, 8, 604-606. https://doi.org/10.1111/j.1474-9726.2009.00503.x
  109. Scher, M.B., Vaquero, A. and Reinberg, D. (2007) SirT3 is a nuclear $NAD^+$-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev., 21, 920-928. https://doi.org/10.1101/gad.1527307
  110. Lombard, D.B., Alt, F.W., Cheng, H.L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M.D., Bronson, R.T., Haigis, M., Guarente, L.P., Farese, R.V. Jr., Weissman, S., Verdin, E. and Schwer, B. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell Biol., 27, 8807-8814. https://doi.org/10.1128/MCB.01636-07
  111. Peek, C.B., Affinati, A.H., Ramsey, K.M., Kuo, H.Y., Yu, W., Sena, L.A., Ilkayeva, O., Marcheva, B., Kobayashi, Y., Omura, C., Levine, D.C., Bacsik, D.J., Gius, D., Newgard, C.B., Goetzman, E., Chandel, N.S., Denu, J.M., Mrksich, M. and Bass, J. (2013) Circadian clock $NAD^+$ cycle drives mitochondrial oxidative metabolism in mice. Science, 342, 1243417. https://doi.org/10.1126/science.1243417
  112. Ahn, B.H., Kim, H.S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.X. and Finkel, T. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A., 105, 14447-14452. https://doi.org/10.1073/pnas.0803790105
  113. Shimazu, T., Hirschey, M.D., Hua, L., Dittenhafer-Reed, K.E., Schwer, B., Lombard, D.B., Li, Y., Bunkenborg, J., Alt, F.W., Denu, J.M., Jacobson, M.P. and Verdin, E. (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab., 12, 654-661. https://doi.org/10.1016/j.cmet.2010.11.003
  114. Kendrick, A.A., Choudhury, M., Rahman, S.M., McCurdy, C.E., Friederich, M., Van Hove, J.L., Watson, P.A., Birdsey, N., Bao, J., Gius, D., Sack, M.N., Jing, E., Kahn, C.R., Friedman, J.E. and Jonscher, K.R. (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J., 433, 505-514. https://doi.org/10.1042/BJ20100791
  115. Nakagawa, T., Lomb, D.J., Haigis, M.C. and Guarente, L. (2009) SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 137, 560-570. https://doi.org/10.1016/j.cell.2009.02.026
  116. Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., He, B., Chen, W., Zhang, S., Cerione, R.A., Auwerx, J., Hao, Q. and Lin, H. (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science, 334, 806-809. https://doi.org/10.1126/science.1207861
  117. Tan, M., Peng, C., Anderson, K.A., Chhoy, P., Xie, Z., Dai, L., Park, J., Chen, Y., Huang, H., Zhang, Y., Ro, J., Wagner, G.R., Green, M.F., Madsen, A.S., Schmiesing, J., Peterson, B.S., Xu, G., Ilkayeva, O.R., Muehlbauer, M.J., Braulke, T., Muhlhausen, C., Backos, D.S., Olsen, C.A., McGuire, P.J., Pletcher, S.D., Lombard, D.B., Hirschey, M.D. and Zhao, Y. (2014) Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab., 19, 605-617. https://doi.org/10.1016/j.cmet.2014.03.014
  118. Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., Breitenbach, M., Grubeck-Loebenstein, B., Herker, E., Fahrenkrog, B., Frohlich, K.U., Sinner, F., Tavernarakis, N., Minois, N., Kroemer, G. and Madeo, F. (2009) Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol., 11, 1305-1314. https://doi.org/10.1038/ncb1975
  119. Daitoku, H., Sakamaki, J. and Fukamizu, A. (2011) Regulation of FoxO transcription factors by acetylation and proteinprotein interactions. Biochim. Biophys. Acta, 1813, 1954-1960. https://doi.org/10.1016/j.bbamcr.2011.03.001
  120. Lee, I.H. and Finkel, T. (2009) Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem., 284, 6322-6328. https://doi.org/10.1074/jbc.M807135200
  121. Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J. and Liu, W. (2015) Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Mol. Cell, 57, 456-466.
  122. Sun, T., Li, X., Zhang, P., Chen, W.D., Zhang, H.L., Li, D.D., Deng, R., Qian, X.J., Jiao, L., Ji, J., Li, Y.T., Wu, R.Y., Yu, Y., Feng, G.K. and Zhu, X.F. (2015) Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat. Commun., 6, 7215. https://doi.org/10.1038/ncomms8215
  123. Yi, C., Ma, M., Ran, L., Zheng, J., Tong, J., Zhu, J., Ma, C., Sun, Y., Zhang, S., Feng, W., Zhu, L., Le, Y., Gong, X., Yan, X., Hong, B., Jiang, F.J., Xie, Z., Miao, D., Deng, H. and Yu, L. (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science, 336, 474-477. https://doi.org/10.1126/science.1216990
  124. Lin, S.Y., Li, T.Y., Liu, Q., Zhang, C., Li, X., Chen, Y., Zhang, S.M., Lian, G., Liu, Q., Ruan, K., Wang, Z., Zhang, C.S., Chien, K.Y., Wu, J., Li, Q., Han, J. and Lin, S.C. (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 336, 477-481. https://doi.org/10.1126/science.1217032
  125. Biel, T.G., Lee, S., Flores-Toro, J.A., Dean, J.W., Go, K.L., Lee, M.H., Law, B.K., Law, M.E., Dunn, W.A. Jr., Zendejas, I., Behrns, K.E. and Kim, J.S. (2016) Sirtuin 1 suppresses mitochondrial dysfunction of ischemic mouse livers in a mitofusin 2-dependent manner. Cell Death Differ., 23, 279-290. https://doi.org/10.1038/cdd.2015.96
  126. Anderson, K.A. and Hirschey, M.D. (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem., 52, 23-35. https://doi.org/10.1042/bse0520023
  127. Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stancakova, A., Goetzman, E., Lam, M.M., Schwer, B., Stevens, R.D., Muehlbauer, M.J., Kakar, S., Bass, N.M., Kuusisto, J., Laakso, M., Alt, F.W., Newgard, C.B., Farese, R.V. Jr., Kahn, C.R. and Verdin, E. (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell, 44, 177-190. https://doi.org/10.1016/j.molcel.2011.07.019
  128. Mackeh, R., Lorin, S., Ratier, A., Mejdoubi-Charef, N., Baillet, A., Bruneel, A., Hamai, A., Codogno, P., Pous, C. and Perdiz, D. (2014) Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate ${\alpha}$-tubulin acetyltransferase-1 (${\alpha}$TAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J. Biol. Chem., 289, 11816-11828. https://doi.org/10.1074/jbc.M113.507400
  129. McLendon, P.M., Ferguson, B.S., Osinska, H., Bhuiyan, M.S., James, J., McKinsey, T.A. and Robbins, J. (2014) Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc. Natl. Acad. Sci. U.S.A., 111, E5178-E5186. https://doi.org/10.1073/pnas.1415589111
  130. Yang, Y., Fiskus, W., Yong, B., Atadja, P., Takahashi, Y., Pandita, T.K., Wang, H.G. and Bhalla, K.N. (2013) Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc. Natl. Acad. Sci. U.S.A., 110, 6841-6846. https://doi.org/10.1073/pnas.1217692110

피인용 문헌

  1. Shedding New Lights with the Breakthrough Ideas to Understand Current Trends in Modern Toxicology vol.32, pp.1, 2016, https://doi.org/10.5487/TR.2016.32.1.001
  2. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway vol.78, pp.1, 2016, https://doi.org/10.1002/ddr.21367
  3. -Methyltransferase in Health and Cancer vol.10, pp.1178-6469, 2017, https://doi.org/10.1177/1178646917691739
  4. Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2-mediated HO-1 expression in V79-4 Chinese hamster lung fibroblasts vol.39, pp.3, 2017, https://doi.org/10.3892/ijmm.2017.2871
  5. Exercise-Induced Autophagy in Fatty Liver Disease vol.45, pp.3, 2017, https://doi.org/10.1249/JES.0000000000000116
  6. MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein pp.07302312, 2017, https://doi.org/10.1002/jcb.26405
  7. vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/2976957
  8. Role of Autophagy in Endothelial Damage and Blood–Brain Barrier Disruption in Ischemic Stroke vol.49, pp.6, 2018, https://doi.org/10.1161/STROKEAHA.117.017287
  9. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing vol.15, pp.9, 2018, https://doi.org/10.1038/s41569-018-0059-z