References
- Abazari, R. and Abazari, R. (2010), "Numerical study of some coupled PDEs by using differential transformation method", Proc. World Acad. Sci. Eng. Tech., 66, 52-59.
- Abbasi, S., Farhatnia, F. and Jazi, S.R. (2014), "A semi-analytical solution on static analysis of circular plate exposed to non-uniform axisymmetric transverse loading resting on Winkler elastic foundation", Arch. Civil Mech. Eng., 14(3), 476-488. https://doi.org/10.1016/j.acme.2013.09.007
- Amirian, B., Hosseini-Ara, R. and Moosavi, H. (2014), "Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model", Appl. Math. Mech., 35(7), 875-886. https://doi.org/10.1007/s10483-014-1835-9
- Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043
- Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774.
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2015a), "A semi-analytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions", Int. J. Struct. Stab. Dyn., 1550023.
- Ebrahimi, F. and Salari, E. (2015b), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 1-58. (Accepted)
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Guo, J.G. and Zhao, Y.P. (2007), "The size-dependent bending elastic properties of nanobeams with surface effects", Nanotechnol., 18(29), 295701.
- Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part B: Eng., 42(4), 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
- He, L.H., Lim, C.W. and Wu, B.S. (2004), "A continuum model for size-dependent deformation of elastic films of nano-scale thickness", Int. J. Solid. Struct., 41(3), 847-857. https://doi.org/10.1016/j.ijsolstr.2003.10.001
- Hosseini-Hashemi, S., Fakher, M. and Nazemnezhad, R. (2013a), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko", J. Solid. Mech., 5(3), 290-304.
- Hosseini-Hashemi, S. and Nazemnezhad, R. (2013b), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B: Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023
- Zhou, J.K. (1986), Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan.
- Malekzadeh, P. and Shojaee, M. (2013), "Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams", Compos. Part B: Eng., 52, 84-92. https://doi.org/10.1016/j.compositesb.2013.03.046
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnol., 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Shariyat, M. (2009), "Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties", Compos. Struct., 88(2), 228-239. https://doi.org/10.1016/j.compstruct.2008.03.044
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/15/2/050
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Wang, L., Ni, Q., Li, M. and Qian, Q. (2008), "The thermal effect on vibration and instability of carbon nanotubes conveying fluid", Physica E: Low-dimen. Syst. Nanostruct., 40(10), 3179-3182. https://doi.org/10.1016/j.physe.2008.05.009
- Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913.
- Zhang, Y.Q., Liu, X. and Liu, G.R. (2007), "Thermal effect on transverse vibrations of double-walled carbon nanotubes", Nanotechnol., 18(44), 445701. https://doi.org/10.1088/0957-4484/18/44/445701
- Zhang, Y.Q., Liu, X. and Zhao, J.H. (2008), "Influence of temperature change on column buckling of multiwalled carbon nanotubes", Phys. Lett. A, 372(10), 1676-1681. https://doi.org/10.1016/j.physleta.2007.10.033
Cited by
- Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects 2018, https://doi.org/10.1080/15376494.2017.1285464
- Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams 2018, https://doi.org/10.1080/15376494.2017.1329468
- Magnetic field effects on buckling characteristics of smart flexoelectrically actuated piezoelectric nanobeams based on nonlocal and surface elasticity theories 2018, https://doi.org/10.1007/s00542-017-3652-x
- Size-dependent hygro–thermo–electro–mechanical vibration analysis of functionally graded piezoelectric nanobeams resting on Winkler–Pasternak foundation undergoing preload and magnetic field 2017, https://doi.org/10.1007/s00542-017-3545-z
- Dynamic modeling of preloaded size-dependent nano-crystalline nano-structures vol.38, pp.12, 2017, https://doi.org/10.1007/s10483-017-2291-8
- Damping Vibration Behavior of Viscoelastic Porous Nanocrystalline Nanobeams Incorporating Nonlocal–Couple Stress and Surface Energy Effects 2017, https://doi.org/10.1007/s40997-017-0127-8
- On wave dispersion characteristics of double-layered graphene sheets in thermal environments 2018, https://doi.org/10.1080/09205071.2017.1417918
- Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory vol.132, pp.11, 2017, https://doi.org/10.1140/epjp/i2017-11694-2
- Nonlocal and Surface Effects on Vibration Behavior of Axially Loaded Flexoelectric Nanobeams Subjected to In-Plane Magnetic Field 2017, https://doi.org/10.1007/s13369-017-2943-y
- A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
- Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
- Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11400-6
- Comprehensive nonlocal analysis of piezoelectric nanobeams with surface effects in bending, buckling and vibrations under magneto-electro-thermo-mechanical loading vol.5, pp.3, 2018, https://doi.org/10.1088/2053-1591/aab46d
- Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field pp.1745-5049, 2018, https://doi.org/10.1080/17455030.2018.1506596
- Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
- Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory pp.1745-5049, 2018, https://doi.org/10.1080/17455030.2018.1490505
- Nonlinear vibration analysis of electro-hygro-thermally actuated embedded nanobeams with various boundary conditions pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3924-0
- Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3946-7
- Dynamic modeling of embedded curved nanobeams incorporating surface effects vol.5, pp.3, 2016, https://doi.org/10.12989/csm.2016.5.3.255
- Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes vol.64, pp.3, 2016, https://doi.org/10.12989/sem.2017.64.3.329
- Surface effects on flutter instability of nanorod under generalized follower force vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.723
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects vol.5, pp.3, 2016, https://doi.org/10.12989/aas.2018.5.3.295
- Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates vol.67, pp.2, 2016, https://doi.org/10.12989/sem.2018.67.2.143
- Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.201
- Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermo-mechanical loading vol.134, pp.9, 2016, https://doi.org/10.1140/epjp/i2019-12795-6
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2016, https://doi.org/10.12989/sem.2020.75.6.659