Acknowledgement
Supported by : University of Kashan
References
- Basar, Y. and Omurtag, M.H. (2000), "Free-vibration analysis of thin/thick laminated structures by layerwise shell models", Comput. Struct., 74, 409-427. https://doi.org/10.1016/S0045-7949(99)00061-9
- Dogruoglu, A.N. and Omurtag, M.H. (2000), "Stability analysis of composite-plate foundation interaction by mixed FEM", J. Eng. Mech., 126(9), 928-936. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(928)
- Dong Yang, X., Qun Chen, L. and Zu, J.W. (2011), "Vibrations and stability of an axially moving rectangular composite plate", J. Appl. Mech., 78(1), 011018- 011029. https://doi.org/10.1115/1.4002002
- Ghorbanpour Arani, A. and Haghparast, E. (2015), "Size-dependent vibration of axially moving viscoelastic microplates based on sinusoidal shear deformation theory", Int. J. Appl. Mech. (in Press)
- Hatami, S., Azhari, M. and Saadatpour, M.M. (2007), "Free vibration of moving laminated composite plates", Compos. Struct., 80, 609-620. https://doi.org/10.1016/j.compstruct.2006.07.009
- Hatami, S., Ronagh, H.R. and Azhari, M. (2008), "Exact free vibration analysis of axially moving viscoelastic plates", Compos. Struct., 86, 1738-1746. https://doi.org/10.1016/j.compstruc.2008.02.002
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53, 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Khalaj, O., Moghaddas Tafreshi, S.N., Masek, B and Dawson, A.R. (2015), "Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test". Geomech. Eng., 9, 373-395. https://doi.org/10.12989/gae.2015.9.3.373
- Khorshid, K. and Farhadi, S. (2013), "Free vibration analysis of a laminated composite rectangular plate in contact with a bounded fluid", Compos. Struct., 104, 176-186. https://doi.org/10.1016/j.compstruct.2013.04.005
- Kim, M., Park, Y.B., Okoli, O.I. and Zhang, C. (2009), "Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites", Compos. Sci. Technol., 69, 335-342. https://doi.org/10.1016/j.compscitech.2008.10.019
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 66, 64-74.
- Marynowski, K. and Grabski, J. (2013), "Dynamic analysis of an axially moving plate subjected to thermal loading", Mech. Res. Commun., 51, 67-71. https://doi.org/10.1016/j.mechrescom.2013.05.004
- Matsunaga, H. (2005), "Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 68, 439-454. https://doi.org/10.1016/j.compstruct.2004.04.010
- Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite plates using a higher-order shear deformation theory", Int. J. Numer. Meth. Eng., 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207
- Rafiee, M., He, X.Q., Mareishi, S. and Liew, K.M. (2014), "Modeling and stress analysis of smart CNTs/fiber/polymer multiscale composite plates", Int. J. Appl. Mech., 6(3), 1450025-1450048. https://doi.org/10.1142/S1758825114500252
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second Edition, CRC Press LLC, Florida, USA.
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52, 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A. Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008
- Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F. and Chou, T.W. (2002), "Carbon nanotube/carbon fiber hybrid multiscale composites", J. Appl. Phys., 91, 6034-6037. https://doi.org/10.1063/1.1466880
Cited by
- Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces vol.116, 2017, https://doi.org/10.1016/j.compositesb.2017.01.071
- Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory 2016, https://doi.org/10.1177/1464420716670929
- Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field 2019, https://doi.org/10.1177/1099636217743177
- Nonlinear vibration study of fiber-reinforced composite thin plate with strain-dependent property based on strain energy density function method pp.1537-6532, 2019, https://doi.org/10.1080/15376494.2018.1495792
- Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.309
- Vibration analysis of functionally graded nanocomposite plate moving in two directions vol.23, pp.5, 2017, https://doi.org/10.12989/scs.2017.23.5.529
- Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields vol.64, pp.3, 2016, https://doi.org/10.12989/sem.2017.64.3.361
- Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation vol.68, pp.2, 2016, https://doi.org/10.12989/sem.2018.68.2.203
- Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation vol.70, pp.6, 2016, https://doi.org/10.12989/sem.2019.70.6.683