References
- Ahn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., Denison, M. S., Lasley, B., Pessah, I. N., Kultz, D. and Chang, D. P. (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ. Health Perspect. 116, 1203-1210. https://doi.org/10.1289/ehp.11200
- Aiello, A. E., Larson, E. L. and Levy, S. B. (2007) Consumer antibacterial soaps: effective or just risky? Clin. Infect. Dis. 45, S137-S147. https://doi.org/10.1086/519255
- Allmyr, M., Adolfsson-Erici, M., McLachlan, M. S. and Sandborgh-Englund, G. (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 372, 87-93. https://doi.org/10.1016/j.scitotenv.2006.08.007
- Bedoux, G., Roig, B., Thomas, O., Dupont, V. and Le Bot, B. (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 19, 1044-1065. https://doi.org/10.1007/s11356-011-0632-z
- Brausch, J. M. and Rand, G. M. (2011) A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82, 1518-1532. https://doi.org/10.1016/j.chemosphere.2010.11.018
- Brunet, A., Datta, S. R. and Greenberg, M. E. (2001) Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
- Calafat, A. M., Ye, X., Wong, L.-Y., Reidy, J. A. and Needham, L. L. (2008) Urinary concentrations of triclosan in the US population: 2003-2004. Environ. Health Perspect. 116, 303-307.
- Chen, J., Ahn, K. C., Gee, N. A., Gee, S. J., Hammock, B. D. and Lasley, B. L. (2007) Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol. Appl. Pharmacol. 221, 278-284. https://doi.org/10.1016/j.taap.2007.03.015
- Chen, X., Xu, B., Han, X., Mao, Z., Chen, M., Du, G., Talbot, P., Wang, X. and Xia, Y. (2015) The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish. Arch. Toxicol. 89, 635-646. https://doi.org/10.1007/s00204-014-1270-2
- Geens, T., Neels, H. and Covaci, A. (2012) Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87, 796-802. https://doi.org/10.1016/j.chemosphere.2012.01.002
- Glaser, A. (2004) The ubiquitous triclosan. A common antibacterial agent exposed. Pestic. You 24, 12-17.
-
Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S.-H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C.-H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-
$3{\beta}$ /${\beta}$ -catenin pathway. Neuropharmacology 63, 1028-1041. https://doi.org/10.1016/j.neuropharm.2012.07.028 - Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y. and Arizono, K. (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 67, 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
- Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa, K. and Ikeda, Y. (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446-451. https://doi.org/10.1038/nm1388
- Ito, K. and Suda, T. (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256. https://doi.org/10.1038/nrm3772
- Jacobs, M. N., Nolan, G. T. and Hood, S. R. (2005) Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 209, 123-133. https://doi.org/10.1016/j.taap.2005.03.015
- Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
- Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M.-R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
- Kwon, K. J., Kim, J. N., Kim, M. K., Lee, J., Ignarro, L. J., Kim, H. J., Shin, C. Y. and Han, S. H. (2011) Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J. Pineal. Res. 50, 110-123.
- Le Belle, J. E., Orozco, N. M., Paucar, A. A., Saxe, J. P., Mottahedeh, J., Pyle, A. D., Wu, H. and Kornblum, H. I. (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59-71. https://doi.org/10.1016/j.stem.2010.11.028
- Li, X., Ying, G. G., Zhao, J. L., Chen, Z. F., Lai, H. J. and Su, H. C. (2013) 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environ. Int. 52, 81-86. https://doi.org/10.1016/j.envint.2011.03.026
- Oliveira, R., Domingues, I., Koppe Grisolia, C. and Soares, A. M. (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. Int. 16, 679-688. https://doi.org/10.1007/s11356-009-0119-3
- Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A. and Cunningham, V. (2002) Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 21, 1338-1349. https://doi.org/10.1002/etc.5620210703
- Paik, J. H., Ding, Z., Narurkar, R., Ramkissoon, S., Muller, F., Kamoun, W. S., Chae, S. S., Zheng, H., Ying, H. and Mahoney, J. (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540-553. https://doi.org/10.1016/j.stem.2009.09.013
- Paul, K. B., Hedge, J. M., DeVito, M. J. and Crofton, K. M. (2010) Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environ. Toxicol. Chem. 29, 2840-2844. https://doi.org/10.1002/etc.339
- Prevention, C. f. D. C. a. (2015) Fourth National Report on Human Exposure to Environmental Chemicals. http://www.cdc.gov/exposurereport/.
- Renault, V. M., Rafalski, V. A., Morgan, A. A., Salih, D. A., Brett, J. O., Webb, A. E., Villeda, S. A., Thekkat, P. U., Guillerey, C. and Denko, N. C. (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527-539. https://doi.org/10.1016/j.stem.2009.09.014
- Rodriguez, P. E. and Sanchez, M. S. (2010) Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring. J. Toxicol. Environ Health A. 73, 1678-1688. https://doi.org/10.1080/15287394.2010.516241
- Sandborgh-Englund, G., M. Adolfsson-Erici., Odham, G. and Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 69, 1861-1873. https://doi.org/10.1080/15287390600631706
- SCCS (2010) Opinion on triclosan (antimicrobial resistance) European Commission.
- Suller, M. and Russell, A. (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob Chemother. 46, 11-18.
- Szychowski, K. A., Sitarz, A. M. and Wojtowicz, A. K. (2015) Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro. Neuroscience 284, 192-201. https://doi.org/10.1016/j.neuroscience.2014.10.001
- Veldhoen, N., Skirrow, R. C., Osachoff, H., Wigmore, H., Clapson, D. J., Gunderson, M. P., Van Aggelen, G. and Helbing, C. C. (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 80, 217-227. https://doi.org/10.1016/j.aquatox.2006.08.010
- Wang, L.-Q., Falany, C. N. and James, M. O. (2004) Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfatesulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. 32, 1162-1169. https://doi.org/10.1124/dmd.104.000273
- Wu, Y., Beland, F. A., Chen, S. and Fang, J. L. (2014) Extracellular signal- regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Arch. Toxicol. 1-15.
- Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
- Zhou, D., Shao, L. and Spitz, D. R. (2014) Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1-67. https://doi.org/10.1016/B978-0-12-420117-0.00001-3
Cited by
- Is Triclosan a neurotoxic agent? vol.20, pp.2, 2017, https://doi.org/10.1080/10937404.2017.1281181
- Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway 2017, https://doi.org/10.1007/s12192-017-0827-4
- Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons vol.151, 2016, https://doi.org/10.1016/j.envres.2016.07.019
- Mitochondrial uncoupler triclosan induces vasorelaxation of rat arteries 2017, https://doi.org/10.1016/j.apsb.2017.06.001
- A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate vol.9, pp.4, 2017, https://doi.org/10.3390/polym9040120
- Triclosan Impairs Hippocampal Synaptic Plasticity and Spatial Memory in Male Rats vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00429
- Triclosan Lacks (Anti-)Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041175
- Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1083-z
- Effects of Several Cosmetic Preservatives on ROS-Dependent Apoptosis of Rat Neural Progenitor Cells vol.26, pp.6, 2016, https://doi.org/10.4062/biomolther.2017.221
- Triclosan: An Update on Biochemical and Molecular Mechanisms vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/1607304
- Low-dose exposure to triclosan disrupted osteogenic differentiation of mouse embryonic stem cells via BMP/ERK/Smad/Runx-2 signalling pathway vol.127, pp.None, 2016, https://doi.org/10.1016/j.fct.2019.02.038
- SARNP, a participant in mRNA splicing and export, negatively regulates E‐cadherin expression via interaction with pinin vol.235, pp.2, 2020, https://doi.org/10.1002/jcp.29073
- Triclosan induces zebrafish neurotoxicity by abnormal expression of miR-219 targeting oligodendrocyte differentiation of central nervous system vol.94, pp.3, 2020, https://doi.org/10.1007/s00204-020-02661-1
- Biochemical markers for prolongation of the acute stress of triclosan in the early life stages of four food fishes vol.247, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.125914
- Perinatal Exposure to Triclosan Results in Abnormal Brain Development and Behavior in Mice vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21114009
- Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways vol.26, pp.1, 2021, https://doi.org/10.1007/s10495-020-01650-0
- Triclosan regulates the Nrf2/HO‐1 pathway through the PI3K/Akt/JNK signaling cascade to induce oxidative damage in neurons vol.36, pp.9, 2016, https://doi.org/10.1002/tox.23315
- Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway vol.224, pp.None, 2016, https://doi.org/10.1016/j.ecoenv.2021.112664
- Environmentally Relevant Concentrations of Triclosan Induce Cyto-Genotoxicity and Biochemical Alterations in the Hatchlings of Labeo rohita vol.11, pp.21, 2021, https://doi.org/10.3390/app112110478
- Effect of dental antiseptic agents on the viability of human periodontal ligament cells vol.33, pp.8, 2016, https://doi.org/10.1016/j.sdentj.2021.09.016