DOI QR코드

DOI QR Code

Effects of Triclosan on Neural Stem Cell Viability and Survival

  • Park, Bo Kyung (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Gonzales, Edson Luck T. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Yang, Sung Min (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Bang, Minji (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Choi, Chang Soon (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University) ;
  • Shin, Chan Young (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
  • Received : 2015.10.08
  • Accepted : 2015.10.30
  • Published : 2016.01.01

Abstract

Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from $1{\mu}M$ to $50{\mu}M$ and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at $50{\mu}M$ induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation.

Keywords

References

  1. Ahn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., Denison, M. S., Lasley, B., Pessah, I. N., Kultz, D. and Chang, D. P. (2008) In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ. Health Perspect. 116, 1203-1210. https://doi.org/10.1289/ehp.11200
  2. Aiello, A. E., Larson, E. L. and Levy, S. B. (2007) Consumer antibacterial soaps: effective or just risky? Clin. Infect. Dis. 45, S137-S147. https://doi.org/10.1086/519255
  3. Allmyr, M., Adolfsson-Erici, M., McLachlan, M. S. and Sandborgh-Englund, G. (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 372, 87-93. https://doi.org/10.1016/j.scitotenv.2006.08.007
  4. Bedoux, G., Roig, B., Thomas, O., Dupont, V. and Le Bot, B. (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 19, 1044-1065. https://doi.org/10.1007/s11356-011-0632-z
  5. Brausch, J. M. and Rand, G. M. (2011) A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82, 1518-1532. https://doi.org/10.1016/j.chemosphere.2010.11.018
  6. Brunet, A., Datta, S. R. and Greenberg, M. E. (2001) Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
  7. Calafat, A. M., Ye, X., Wong, L.-Y., Reidy, J. A. and Needham, L. L. (2008) Urinary concentrations of triclosan in the US population: 2003-2004. Environ. Health Perspect. 116, 303-307.
  8. Chen, J., Ahn, K. C., Gee, N. A., Gee, S. J., Hammock, B. D. and Lasley, B. L. (2007) Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol. Appl. Pharmacol. 221, 278-284. https://doi.org/10.1016/j.taap.2007.03.015
  9. Chen, X., Xu, B., Han, X., Mao, Z., Chen, M., Du, G., Talbot, P., Wang, X. and Xia, Y. (2015) The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish. Arch. Toxicol. 89, 635-646. https://doi.org/10.1007/s00204-014-1270-2
  10. Geens, T., Neels, H. and Covaci, A. (2012) Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87, 796-802. https://doi.org/10.1016/j.chemosphere.2012.01.002
  11. Glaser, A. (2004) The ubiquitous triclosan. A common antibacterial agent exposed. Pestic. You 24, 12-17.
  12. Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S.-H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C.-H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-$3{\beta}$/${\beta}$-catenin pathway. Neuropharmacology 63, 1028-1041. https://doi.org/10.1016/j.neuropharm.2012.07.028
  13. Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y. and Arizono, K. (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 67, 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005
  14. Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa, K. and Ikeda, Y. (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446-451. https://doi.org/10.1038/nm1388
  15. Ito, K. and Suda, T. (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243-256. https://doi.org/10.1038/nrm3772
  16. Jacobs, M. N., Nolan, G. T. and Hood, S. R. (2005) Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 209, 123-133. https://doi.org/10.1016/j.taap.2005.03.015
  17. Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
  18. Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M.-R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
  19. Kwon, K. J., Kim, J. N., Kim, M. K., Lee, J., Ignarro, L. J., Kim, H. J., Shin, C. Y. and Han, S. H. (2011) Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J. Pineal. Res. 50, 110-123.
  20. Le Belle, J. E., Orozco, N. M., Paucar, A. A., Saxe, J. P., Mottahedeh, J., Pyle, A. D., Wu, H. and Kornblum, H. I. (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59-71. https://doi.org/10.1016/j.stem.2010.11.028
  21. Li, X., Ying, G. G., Zhao, J. L., Chen, Z. F., Lai, H. J. and Su, H. C. (2013) 4-Nonylphenol, bisphenol-A and triclosan levels in human urine of children and students in China, and the effects of drinking these bottled materials on the levels. Environ. Int. 52, 81-86. https://doi.org/10.1016/j.envint.2011.03.026
  22. Oliveira, R., Domingues, I., Koppe Grisolia, C. and Soares, A. M. (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. Int. 16, 679-688. https://doi.org/10.1007/s11356-009-0119-3
  23. Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A. and Cunningham, V. (2002) Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 21, 1338-1349. https://doi.org/10.1002/etc.5620210703
  24. Paik, J. H., Ding, Z., Narurkar, R., Ramkissoon, S., Muller, F., Kamoun, W. S., Chae, S. S., Zheng, H., Ying, H. and Mahoney, J. (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540-553. https://doi.org/10.1016/j.stem.2009.09.013
  25. Paul, K. B., Hedge, J. M., DeVito, M. J. and Crofton, K. M. (2010) Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats. Environ. Toxicol. Chem. 29, 2840-2844. https://doi.org/10.1002/etc.339
  26. Prevention, C. f. D. C. a. (2015) Fourth National Report on Human Exposure to Environmental Chemicals. http://www.cdc.gov/exposurereport/.
  27. Renault, V. M., Rafalski, V. A., Morgan, A. A., Salih, D. A., Brett, J. O., Webb, A. E., Villeda, S. A., Thekkat, P. U., Guillerey, C. and Denko, N. C. (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527-539. https://doi.org/10.1016/j.stem.2009.09.014
  28. Rodriguez, P. E. and Sanchez, M. S. (2010) Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring. J. Toxicol. Environ Health A. 73, 1678-1688. https://doi.org/10.1080/15287394.2010.516241
  29. Sandborgh-Englund, G., M. Adolfsson-Erici., Odham, G. and Ekstrand, J. (2006). Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. Health A 69, 1861-1873. https://doi.org/10.1080/15287390600631706
  30. SCCS (2010) Opinion on triclosan (antimicrobial resistance) European Commission.
  31. Suller, M. and Russell, A. (2000) Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob Chemother. 46, 11-18.
  32. Szychowski, K. A., Sitarz, A. M. and Wojtowicz, A. K. (2015) Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro. Neuroscience 284, 192-201. https://doi.org/10.1016/j.neuroscience.2014.10.001
  33. Veldhoen, N., Skirrow, R. C., Osachoff, H., Wigmore, H., Clapson, D. J., Gunderson, M. P., Van Aggelen, G. and Helbing, C. C. (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat. Toxicol. 80, 217-227. https://doi.org/10.1016/j.aquatox.2006.08.010
  34. Wang, L.-Q., Falany, C. N. and James, M. O. (2004) Triclosan as a substrate and inhibitor of 3′-phosphoadenosine 5′-phosphosulfatesulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. 32, 1162-1169. https://doi.org/10.1124/dmd.104.000273
  35. Wu, Y., Beland, F. A., Chen, S. and Fang, J. L. (2014) Extracellular signal- regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Arch. Toxicol. 1-15.
  36. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. and Greenberg, M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  37. Zhou, D., Shao, L. and Spitz, D. R. (2014) Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1-67. https://doi.org/10.1016/B978-0-12-420117-0.00001-3

Cited by

  1. Is Triclosan a neurotoxic agent? vol.20, pp.2, 2017, https://doi.org/10.1080/10937404.2017.1281181
  2. Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+]c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway 2017, https://doi.org/10.1007/s12192-017-0827-4
  3. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons vol.151, 2016, https://doi.org/10.1016/j.envres.2016.07.019
  4. Mitochondrial uncoupler triclosan induces vasorelaxation of rat arteries 2017, https://doi.org/10.1016/j.apsb.2017.06.001
  5. A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate vol.9, pp.4, 2017, https://doi.org/10.3390/polym9040120
  6. Triclosan Impairs Hippocampal Synaptic Plasticity and Spatial Memory in Male Rats vol.11, pp.1662-5099, 2018, https://doi.org/10.3389/fnmol.2018.00429
  7. Triclosan Lacks (Anti-)Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041175
  8. Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1083-z
  9. Effects of Several Cosmetic Preservatives on ROS-Dependent Apoptosis of Rat Neural Progenitor Cells vol.26, pp.6, 2016, https://doi.org/10.4062/biomolther.2017.221
  10. Triclosan: An Update on Biochemical and Molecular Mechanisms vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/1607304
  11. Low-dose exposure to triclosan disrupted osteogenic differentiation of mouse embryonic stem cells via BMP/ERK/Smad/Runx-2 signalling pathway vol.127, pp.None, 2016, https://doi.org/10.1016/j.fct.2019.02.038
  12. SARNP, a participant in mRNA splicing and export, negatively regulates E‐cadherin expression via interaction with pinin vol.235, pp.2, 2020, https://doi.org/10.1002/jcp.29073
  13. Triclosan induces zebrafish neurotoxicity by abnormal expression of miR-219 targeting oligodendrocyte differentiation of central nervous system vol.94, pp.3, 2020, https://doi.org/10.1007/s00204-020-02661-1
  14. Biochemical markers for prolongation of the acute stress of triclosan in the early life stages of four food fishes vol.247, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.125914
  15. Perinatal Exposure to Triclosan Results in Abnormal Brain Development and Behavior in Mice vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21114009
  16. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways vol.26, pp.1, 2021, https://doi.org/10.1007/s10495-020-01650-0
  17. Triclosan regulates the Nrf2/HO‐1 pathway through the PI3K/Akt/JNK signaling cascade to induce oxidative damage in neurons vol.36, pp.9, 2016, https://doi.org/10.1002/tox.23315
  18. Triclosan-induced glycolysis drives inflammatory activation in microglia via the Akt/mTOR/HIF 1α signaling pathway vol.224, pp.None, 2016, https://doi.org/10.1016/j.ecoenv.2021.112664
  19. Environmentally Relevant Concentrations of Triclosan Induce Cyto-Genotoxicity and Biochemical Alterations in the Hatchlings of Labeo rohita vol.11, pp.21, 2021, https://doi.org/10.3390/app112110478
  20. Effect of dental antiseptic agents on the viability of human periodontal ligament cells vol.33, pp.8, 2016, https://doi.org/10.1016/j.sdentj.2021.09.016