DOI QR코드

DOI QR Code

Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu) ;
  • Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung Ang University) ;
  • La, Hyen-Oh (Department of Pharmacology, College of Medicine, The Catholic University of Korea)
  • Received : 2015.07.13
  • Accepted : 2015.08.07
  • Published : 2016.01.01

Abstract

Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane $A_2$- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function.

Keywords

References

  1. Ajay, M., Gilani, A. U. and Mustafa, M. R. (2003) Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 74, 603-612. https://doi.org/10.1016/j.lfs.2003.06.039
  2. Ash, D., Subramanian, M., Surolia, A. and Shaha, C. (2015) Nitric oxide is the key mediator of death induced by fisetin in human acute monocytic leukemia cells. Am. J. Cancer Res. 5, 481-497.
  3. Cheong, H. Ryu, S. Y., Oak, M. H., Cheon, S. H., Yoo, G. S. and Kim, K. M. (1998) Studies of structure activity relationship of flavonoids for the anti-allergic actions. Arch. Pharm. Res. 21, 478-480. https://doi.org/10.1007/BF02974647
  4. Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-2252. https://doi.org/10.1152/ajpheart.00681.2009
  5. Gu, Z., Kordowska, J., Williams, G. L., Wang, C. L. and Hai, C. M. (2007) Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells. Exp. Cell Res. 313, 849-866. https://doi.org/10.1016/j.yexcr.2006.12.005
  6. Jang, K. Y., Jeong, S. J., Kim, S. H., Jung, J. H., Kim, J. H., Koh, W., Chen, C. Y. and Kim, S. H. (2012) Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetininduced apoptosis in multiple myeloma U266 cells. Cancer Lett. 319, 197-202. https://doi.org/10.1016/j.canlet.2012.01.008
  7. Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist- induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
  8. Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
  9. Kitazawa, T., Masuo, M. and Somlyo, A. P. (1991) G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. U.S.A. 88, 9307-9310. https://doi.org/10.1073/pnas.88.20.9307
  10. Kordowska, J., Huang, R. and Wang, C. L. (2006) Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation. J. Biomed. Sci. 13, 159-172. https://doi.org/10.1007/s11373-005-9060-8
  11. Lee, W. R., Shen, S. C., Lin, H. Y., Hou, W. C., Yang, L. L. and Chen, Y. C. (2002) Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2+)-dependent endonuclease. Biochem. Pharmacol. 63, 225-236. https://doi.org/10.1016/S0006-2952(01)00876-0
  12. Lim, K. M., Kwon, J. H., Kim, K., Noh, J. Y., Kang, S., Park, J. M., Lee, M. Y., Bae, O. N. and Chung, J. H. (2014) Emodin inhibits tonic tension through suppressing $PKC{\delta}$-mediated inhibition of myosin phosphatase in rat isolated thoracic aorta. Br. J. Pharmacol. 171, 4300-4310. https://doi.org/10.1111/bph.12804
  13. Patel, M. Y., Panchal, H. V., Ghribi, O. and Benzeroual, K. E. (2012) The neuroprotective effect of fisetin in the MPTP model of Parkinson's disease. J. Parkinsons Dis. 2, 287-302.
  14. Ravichandran, N., Suresh, G., Ramesh, B. and Siva, G. V. (2011) Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem. Toxicol. 49, 1141-1147. https://doi.org/10.1016/j.fct.2011.02.005
  15. Ross, J. A. and Kasum, C. M. (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  16. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003) $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulationinduced vascular smooth muscle contraction. Circ. Res. 93, 548-556. https://doi.org/10.1161/01.RES.0000090998.08629.60
  17. Somlyo, A. P. and Somlyo, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231-236. https://doi.org/10.1038/372231a0
  18. Somlyo, A. P. and Somlyo, A. V. (1998) From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol. Scand. 164, 437-448. https://doi.org/10.1046/j.1365-201X.1998.00454.x
  19. Taubert, D., Berkels, R., Klaus, W. and Roesen, R. (2002) Nitric oxide formation and corresponding relaxation of porcine coronary arteries induced by plant phenols: essential structural features. J. Cardiovasc. Pharmacol. 40, 701-13. https://doi.org/10.1097/00005344-200211000-00008
  20. Touyz, R. M., Deng, L. Y., He, G., Wu, X. H. and Schiffrin, E. L. (1999) Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. J. Hypertens. 17, 907-916. https://doi.org/10.1097/00004872-199917070-00006
  21. Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
  22. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994. https://doi.org/10.1038/40187
  23. Wier, W. G. and Morgan, K. G. (2003) ${\alpha}1$-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91-139.
  24. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. https://doi.org/10.1042/BJ20050237
  25. Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
  26. Xu, Q., Liu, Y., Gorospe, M., Udelsman, R. and Holbrook, N. J. (1996) Acute hypertension activates mitogen-activated protein kinases in arterial wall. J. Clin. Invest. 97, 508-514. https://doi.org/10.1172/JCI118442

Cited by

  1. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP vol.10, pp.6, 2016, https://doi.org/10.3390/antiox10060879