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SOME SUBORDINATION PROPERTIES OF

THE LINEAR OPERATOR

Trailokya Panigrahi

Abstract. In this paper, subordination results of analytic function f ∈

Ap involving linear operator Kδ,λ
c,p are obtained. By applying the differen-

tial subordination method, results are derived under some sufficient sub-
ordination conditions. On using some hypergeometric identities, corollar-
ies of the main results are derived. Furthermore, convolution preserving
properties for a class of multivalent analytic function associated with the

operator K
δ,λ
c,p are investigated.

1. Introduction

Let Ap denote the class of functions f(z) of the form

(1.1) f(z) = zp +

∞∑

k=1

ak+pz
k+p (p ∈ N := {1, 2, 3, . . .})

that are analytic and p-valent in the open unit disk U = {z ∈ C : |z| < 1}.
For functions f ∈ Ap given by (1.1) and g ∈ Ap given by

g(z) = zp +

∞∑

k=1

bk+pz
k+p (z ∈ U),

the Hadamard product (or convolution) of f and g denoted by f ∗ g is defined
as

(1.2) (f ∗ g)(z) = zp +

∞∑

k=1

ak+pbk+pz
k+p = (g ∗ f)(z) (z ∈ U).

Suppose that f and g are analytic in the unit disk U. We say that f is subor-
dinate to g (or g is superordinate to f), written as

f ≺ g in U or f(z) ≺ g(z) (z ∈ U),
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if there exists a Schwarz function w(z), which (by definition) is analytic in
U with w(0) = 0 and |w(z)| < 1 such that

f(z) = g(w(z)) (z ∈ U).

It follows from the Schwarz lemma that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

In particular, if the function g is univalent in U, then the reverse implication
holds true (see [7, 8]).

For real parameters A, B (−1 ≤ B < A ≤ 1), the function 1+Az
1+Bz

(z ∈ U),

maps conformally U onto a disk (whenever −1 ≤ B ≤ 1), symmetrical with
respect to the real axis having center at 1−AB

1−B2 and radius A−B
1−B2 where B 6= ±1.

Furthermore, the boundary circle of the disk intersects the real axis at the
point 1−A

1−B
and 1+A

1+B
provided B 6= ±1.

Motivated essentially by Khairnar and More [5], Salim [10] introduced the
integral operator Kδ

c,p : Ap → Ap as follows:

Kδ
c,pf(z) =

{
(c+p)δ

Γ(δ)zc

∫ z

0 t
c−1

(
log z

t

)δ−1
f(t)dt (δ > 0; c > −p)

f(z) (δ = 0).
(1.3)

For f ∈ Ap given by (1.1), it can be easily deduced from (1.3) that

(1.4) Kδ
c,pf(z) = zp +

∞∑

k=1

(
c+ p

c+ p+ k

)δ

ak+pz
k+p (δ ≥ 0, c > −p; z ∈ U).

Define a function φδc,p(z) by

(1.5) φδc,p(z) = zp +
∞∑

k=1

(
c+ p+ k

c+ p

)δ

zk+p (δ ≥ 0, c > −p).

Corresponding to the function φδc,p(z) defined by (1.5), we consider the function

φδ,+c,p (z), the generalized multiplicative inverse of φδc,p(z) given by

(1.6) φδc,p(z) ∗ φ
δ,+
c,p (z) =

zp

(1− z)λ+p
(λ > −p; z ∈ U).

Note that, if λ = −p+ 1, then φδ,+c,p (z) is the inverse of φδc,p(z) with respect to
the Hadamard product (or convolution) ∗.

Using this function we define the following family of operatorKδ,λ
c,p : Ap → Ap

defined by

Kδ,λ
c,pf(z) = φδ,+c,p (z) ∗ f(z) = zp +

∞∑

k=1

(
c+ p

c+ p+ k

)δ
(λ+ p)k
(1)k

ak+pz
k+p(1.7)

(λ > −p, δ ≥ 0, f ∈ Ap; z ∈ U),
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where (λ)k is the Pochhammer symbol (or shifted factorial) given by

(1.8) (λ)k =
Γ(λ+ k)

Γ(λ)
=

{
1 (k = 0;λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ k − 1) (k ∈ N;λ ∈ C).

By specializing the parameters c, p, δ and λ we obtain the following operators
studied earlier by various researchers:

• Kδ,−p+1
c,p ≡ Kδ

c,p which is the generalized Komatu integral operator [5].

• Kδ,0
c,1 ≡ Pδ

c which is the integral operator studied by Komatu [6] and

Raina and Bapna [9].

• Kδ,−p+1
1,p ≡ Iδ

p which is the integral operator studied by Shams et al.

[11] and Ebadian et al. [3].

• K1,0
c,1 = Lc which is the Bernardi-Libra-Livingston integral operator [1].

• Kδ,0
1,1 ≡ Iδ which is the integral operator studied by Ebadian and Na-

jafzadeh [2].
• Kδ,−p+1

c,p ≡ J δ
p,c,1 which is the generalized differential operator studied

by Swamy [14].

It can be easily verified from (1.7) that

(1.9) z
(
Kδ,λ

c,pf(z)
)′

= (c+ p) Kδ−1,λ
c,p f(z)− c Kδ,λ

c,pf(z) (δ ≥ 1).

The object of the present paper is to derive new subordination results and
convolution preserving properties of multivalent function involving Kδ,λ

c,p .

2. Preliminaries

In order to derive our main results, we have to recall the following lemmas.

Lemma 2.1 ([4], also see ([8], p. 71)). Let the function h be analytic and

convex (univalent) in U with h(0) = 1. Suppose that the function φ(z) given by

φ(z) = 1 + c1z + c2z
2 + · · ·

is analytic in U. If

(2.1) φ(z) +
zφ′(z)

γ
≺ h(z) (z ∈ U, ℜ(γ) ≥ 0, γ 6= 0),

then

(2.2) φ(z) ≺ ψ(z) =
γ

zγ

∫ z

0

tγ−1h(t)dt ≺ h(z) (z ∈ U),

where ψ(z) is the best dominant of (2.2).

For real or complex numbers a, b, c (c /∈ Z
−
0 ), the Gauss hypergeometric

function is defined by:

2F1(a, b; c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .
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We note that the above series converges absolutely for z ∈ U and hence repre-
sents an analytic function in the unit disk U (see, for details, [15, Chapter 14]).
Each of the identities (asserted by Lemma 2.2 below) is fairly well known (see
[15, Chapter 14]).

Lemma 2.2 (see [15]). For real or complex parameters a, b, c (c /∈ Z
−
0 ), we

have

(2.3)

∫ 1

0

tb−1(1 − t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z),

(2.4) 2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c− b; c;

z

z − 1

)
,

(2.5) 2F1(1, 1; 2; z) = −z−1 ln(1− z)

and

(2.6)
c(c− 1)(z − 1)2F1(a, b; c− 1; z) + c[c− 1− (2c− a− b− 1)z]2F1(a, b; c; z)

+ (c− a)(c− b)z2F1(a, b; c+ 1; z) = 0.

From the identities (2.5) and (2.6), we can easily prove the following:

Lemma 2.3. For any real number s 6= 0, we have

(2.7) 2F1

(
1, 1; 2;

sz

sz + 1

)
=

(1 + sz) ln(1 + sz)

sz
,

(2.8) 2F1

(
1, 1; 3;

sz

sz + 1

)
=

2(1 + sz)

sz

[
1−

ln(1 + sz)

sz

]
,

(2.9) 2F1

(
1, 1; 4;

sz

sz + 1

)
=

3(1 + sz)

2(sz)3
[2 ln(1 + sz)− sz(2− sz)] ,

(2.10) 2F1

(
1, 1; 5;

sz

sz + 1

)
=

2(1 + sz)

(sz)3

[
2(sz)2 − 3sz + 6

3
−

2 ln(1 + sz)

sz

]
.

With a view to stating a well-known result (Lemma 2.4 below), we denote
P(γ) (0 ≤ γ < 1) by the class of functions of the form

(2.11) p(z) = 1 + p1z + p2z
2 + · · · (z ∈ U)

which is analytic in U and satisfies the condition

(2.12) ℜ(p(z)) > γ (0 ≤ γ < 1; z ∈ U).

The relation

p ∈ P(γ) ⇐⇒ p(z) ≺
1 + (1− 2γ)z

1− z
together with Lindelöf’s principle of subordination gives the following well
known result.
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Lemma 2.4 (see [12]). Let the function p(z) given by (2.11) be in the class

P(γ). Then

(2.13) ℜ(p(z)) ≥ 2γ − 1 +
2(1− γ)

1 + |z|
(0 ≤ γ < 1; z ∈ U).

Lemma 2.5 (see [13]). If

(2.14) ψj(z) ∈ P(γj) (0 ≤ γj < 1; j = 1, 2),

then

(2.15) (ψ1 ∗ ψ2)(z) ∈ P(γ3) (γ3 = 1− 2(1− γ1)(1 − γ2)).

The bound γ3 is the best possible.

3. Main results

We state and prove our main results.

Theorem 3.1. Let α > 0, δ > 2 and c > −p. Suppose that

(3.1)
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

[
1 + α

(
Kδ−2,λ

c,p f(z)

Kδ−1,λ
c,p f(z)

−
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

)]
≺

1 +Az

1 + Bz
(z ∈ U).

Then

(3.2)
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

≺ q(z) ≺
1 +Az

1 +Bz
(z ∈ U),

where

q(z)=(1+Bz)−1
[
2F1

(
1, 1; c+p

α
+1; Bz

Bz+1

)
+A(c+p)z

c+p+α 2F1

(
1, 1; c+p

α
+2; Bz

Bz+1

)]

and q(z) is the best dominant of (3.2). Furthermore,

(3.3) ℜ

{
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

}
> ρ,

where

ρ = (1 −B)−1
[
2F1

(
1, 1; c+p

α
+ 1; B

B−1

)
− A(c+p)

c+p+α 2F1

(
1, 1; c+p

α
+ 2; B

B−1

)]
.

Proof. Suppose that

(3.4) p(z) =
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

.

Then p(z) is analytic in U with p(0) = 1. Taking logarithmic differentiation in
(3.4) yields

(3.5)
zp′(z)

p(z)
=
z
(
Kδ−1,λ

c,p f(z)
)′

Kδ−1,λ
c,p f(z)

−
z
(
Kδ,λ

c,pf(z)
)′

Kδ,λ
c,pf(z)

.
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By making use of the identity (1.9) in (3.5), we get

(3.6)
Kδ−2,λ

c,p f(z)

Kδ−1,λ
c,p f(z)

−
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

=
zp′(z)

(c+ p) p(z)
.

From (3.4) and (3.6), we obtain

(3.7)
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

[
1 + α

(
Kδ−2,λ

c,p f(z)

Kδ−1,λ
c,p f(z)

−
Kδ−1,λ

c,p f(z)

Kδ,λ
c,pf(z)

)]
= p(z)+

α

c+ p
zp′(z).

Thus from (3.1) and (3.7), we have

(3.8) p(z) +
α

c+ p
zp′(z) ≺

1 +Az

1 +Bz
(z ∈ U).

Applying Lemma 2.1 gives

(3.9) p(z) ≺ q(z) =
c+ p

α
z−( c+p

α
)

∫ z

0

t
c+p
α

−1

(
1 +At

1 +Bt

)
dt ≺

1 +Az

1 +Bz
.

Now using the identities (2.3) and (2.4) of Lemma 2.2, we can rewrite the
function q(z) as

q(z)

(3.10)

=
c+ p

α

∫ 1

0

s
c+p
α

−1

(
1 +Asz

1 +Bsz

)
ds

=
c+ p

α

∫ 1

0

s
c+p
α

−1(1 +Bsz)−1ds+
c+ p

α
Az

∫ 1

0

s
c+p
α (1 +Bsz)−1ds

= (1 +Bz)−1
[
2F1

(
1, 1; c+p

α
+ 1, Bz

Bz+1

)
+ (c+p)Az

c+p+α 2F1

(
1, 1; c+p

α
+ 2; Bz

Bz+1

)]
.

This completes the proof of the assertion (3.2) of Theorem 3.1.
To prove (3.3), it is sufficient to show

(3.11) inf
|z|<1

q(z) = q(−1).

Since for −1 ≤ B < A ≤ 1, 1+Az
1+Bz

is convex (univalent) in U, we have for

|z| ≤ r < 1,

(3.12) ℜ

(
1 +Az

1 +Bz

)
≥

1−Ar

1−Br
.

Upon setting

g(s, z) =
1 +Asz

1 +Bsz
(0 ≤ s ≤ 1; z ∈ U),

and

dv(s) = s
c+p
α

−1

(
c+ p

α

)
ds,
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which is a positive measure on [0, 1], we get

q(z) =

∫ 1

0

g(s, z)dv(s)

so that

ℜ{q(z)} ≥

∫ 1

0

(
1−Asr

1−Bsr

)
dv(s) = q(−r) (|z| ≤ r < 1).

Letting r → 1− in the above inequality, we obtain the assertion (3.11). The
proof of Theorem 3.1 is thus completed. �

Taking α = p = 1 and c = 0 in Theorem 3.1 and using the identities (2.7)
and (2.8) of Lemma 2.3, we obtain the following results.

Corollary 3.2. Let δ > 2 and suppose that

Kδ−1,λ
0,1 f(z)

Kδ,λ
0,1f(z)

[
1 +

Kδ−2,λ
0,1 f(z)

Kδ−1,λ
0,1 f(z)

−
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

]
≺

1 +Az

1 +Bz
.

Then

Kδ−1,λ
0,1 f(z)

Kδ,λ
0,1f(z)

≺ q1(z) ≺
1 +Az

1 +Bz
(z ∈ U),

where

q1(z) =

{
A
B
+
(
1− A

B

)
ln(1+Bz)

Bz
(B 6= 0)

1 + A
2 z (B = 0)

and q1(z) is the best dominant.

Furthermore,

ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

}
> ρ1

where

ρ1 =

{
A
B
−
(
1− A

B

)
ln(1−B)

B
(B 6= 0)

1− A
2 (B = 0).

Letting p = c = α = 1 in Theorem 3.1 and using the identities (2.8) and
(2.9) of Lemma 2.3, we get the following corollary.

Corollary 3.3. Let δ > 2 and suppose that

Kδ−1,λ
1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

Kδ−2,λ
1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

]
≺

1 +Az

1 +Bz
.

Then

Kδ−1,λ
1,1 f(z)

Kδ,λ
1,1f(z)

≺ q2(z) ≺
1 +Az

1 +Bz
(z ∈ U),
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where

q2(z) =

{
A
B
− 2

B2

(
1− A

B

) [ ln(1+Bz)−Bz

z2

]
(B 6= 0)

1 + 2A
3 z (B = 0)

and q2(z) is the best dominant.

Furthermore,

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> ρ2,

where

ρ2 =

{
A
B
− 2

B2

(
1− A

B

)
[ln(1 −B) +B] (B 6= 0)

1− 2A
3 (B = 0).

Putting α = 2
3 and c = p = 1 in Theorem 3.1 and using the identities (2.9)

and (2.10) of Lemma 2.3, we have:

Corollary 3.4. Let δ > 2 and suppose that

Kδ−1,λ
1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

2

3

(
Kδ−2,λ

1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

)]
≺

1 +Az

1 +Bz
.

Then
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

≺ q3(z) ≺
1 +Az

1 +Bz
(z ∈ U),

where

q3(z) =

{
A
B
+ 3

(Bz)3

(
1− A

B

) [
ln(1 +Bz)−Bz + (Bz)2

2

]
(B 6= 0)

1 + 3A
4 z (B = 0)

and q3(z) is the best dominant.

Furthermore,

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> ρ3,

where

ρ3 =

{
A
B
− 3

B3

(
1− A

B

) [
ln(1−B) +B + B2

2

]
(B 6= 0)

1− 3A
4 (B = 0).

Taking B 6= 0 in Corollaries 3.2, 3.3 and 3.4 respectively, we obtain the
following results.

Corollary 3.5. Let δ > 2. Then we have the following:

• If

Kδ−1,λ
0,1 f(z)

Kδ,λ
0,1f(z)

[
1 +

Kδ−2,λ
0,1 f(z)

Kδ−1,λ
0,1 f(z)

−
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

]
≺

1 + B ln(1−B)
B+ln(1−B)z

1 +Bz



SOME SUBORDINATION PROPERTIES OF THE LINEAR OPERATOR 155

which implies

ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

}
> 0 (z ∈ U).

• If

Kδ−1,λ
1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

Kδ−2,λ
1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

]
≺

1 + 2B[B+ln(1−B)]
2[B+ln(1−B)]+B2 z

1 +Bz

which implies

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> 0 (z ∈ U).

• If

Kδ−1,λ
1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

2

3

(
Kδ−2,λ

1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

)]

≺
1 +

3B[ln(1−B)+B+B2

2 ]

B3+3[ln(1−B)+B+B2

2 ]
z

1 +Bz

which implies

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> 0 (z ∈ U).

Letting B = −1 in Corollary 3.5, we have:

Corollary 3.6. Let δ > 2, then we have the following:
(i) If

ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

[
1 +

Kδ−2,λ
0,1 f(z)

Kδ−1,λ
0,1 f(z)

−
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

]}
>

2 ln 2− 1

2 ln 2− 2
≈ −0.61

=⇒ ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

}
> 0 (z ∈ U).

(ii) If

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

Kδ−2,λ
1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

]}
>

4 ln 2− 3

4 ln 2− 2
≈ −0.29

=⇒ ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> 0 (z ∈ U).
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(iii) If

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

2

3

(
Kδ−2,λ

1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

)]}
>

6 ln 2− 4

6 ln 2− 5
≈ −0.19

=⇒ ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> 0 (z ∈ U).

Letting A = 1 − 2η (0 ≤ η < 1) and B = −1 in Corollaries 3.2, 3.3 and 3.4
respectively, we have

Corollary 3.7. Let δ > 2. Then we have the following:
(i) If

ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

[
1 +

Kδ−2,λ
0,1 f(z)

Kδ−1,λ
0,1 f(z)

−
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

]}
> η

=⇒ ℜ

{
Kδ−1,λ

0,1 f(z)

Kδ,λ
0,1f(z)

}
> (2η − 1) + 2(1− η) ln 2.

(ii) If

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

Kδ−2,λ
1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

]}
> η

=⇒ ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> (2η − 1)− 4(1− η)(ln 2− 1).

(iii) If

ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

[
1 +

2

3

(
Kδ−2,λ

1,1 f(z)

Kδ−1,λ
1,1 f(z)

−
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

)]}
> η

=⇒ ℜ

{
Kδ−1,λ

1,1 f(z)

Kδ,λ
1,1f(z)

}
> (2η − 1) + 3(1− η)(2 ln 2− 1).

4. Convolution properties of Kδ,λ
c,p

In this section we investigate some new basic properties of the operator Kδ,λ
c,p

using the principle of differential subordination.

Theorem 4.1. Let µ > 0 and −1 ≤ Bj < Aj ≤ 1 (j = 1, 2). If each of the

functions fj ∈ Ap (j = 1, 2) satisfies

(4.1) (1− µ)
Kδ,λ

c,pfj(z)

zp
+ µ

Kδ−1,λ
c,p fj(z)

zp
≺

1 +Ajz

1 +Bjz
(j = 1, 2; z ∈ U),

then

(4.2) (1− µ)
Kδ,λ

c,pF (z)

zp
+ µ

Kδ−1,λ
c,p F (z)

zp
≺

1 + (1 − 2η)z

1− z
(z ∈ U),
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where

(4.3) F (z) = Kδ,λ
c,p (f1 ∗ f2)(z) (z ∈ U),

and

(4.4) η = 1−
4(A1 −B1)(A2 −B2)

(1 −B1)(1−B2)

[
1−

1

2
2F1

(
1, 1, ;

c+ p

µ
+ 1;

1

2

)]
.

The result is sharp when B1 = B2 = −1.

Proof. Suppose that each of the functions fj ∈ Ap (j = 1, 2) satisfies the
condition (4.1). Set

(4.5) φj(z) = (1− µ)
Kδ,λ

c,pfj(z)

zp
+ µ

Kδ−1,λ
c,p fj(z)

zp
(j = 1, 2; z ∈ U),

we observe that φj ∈ P(γj) where γj =
1−Aj

1−Bj
(j = 1, 2). Thus, by making use

of identity (1.9) in (4.5), we obtain

(4.6) Kδ,λ
c,pfj(z) =

c+ p

µ
zp−

c+p
µ

∫ z

0

t
c+p
µ

−1φj(t)dt (j = 1, 2).

Using (4.3) and (4.6), a simple calculation shows that

(4.7) Kδ,λ
c,pF (z) =

(
c+ p

µ
zp−

c+p
µ

∫ z

0

t
c+p
µ

−1φ(t)dt

)

where, for convenience,

φ(z) = (1− µ)
Kδ,λ

c,pF (z)

zp
+ µ

Kδ−1,λ
c,p F (z)

zp

=
c+ p

µ
z−

c+p
µ

∫ z

0

t
c+p
µ

−1(φ1 ∗ φ2)(t)dt.(4.8)

Since
φj ∈ P(γj) (j = 1, 2),

it follows from Lemma 2.5 that

(4.9) (φ1 ∗ φ2)(z) ∈ P(γ3) (γ3 = 1− 2(1− γ1)(1 − γ2))

and the bound γ3 is the best possible. Hence applying Lemma 2.4 to (4.8) gives

ℜ(φ(z)) =
c+ p

µ

∫ 1

0

s
c+p
µ

−1ℜ(φ1 ∗ φ2(sz))ds

≥
c+ p

µ

∫ 1

0

s
c+p
µ

−1

(
2γ3 − 1 +

2(1− γ3)

1 + s|z|

)
ds

> 1−
4(A1 −B1)(A2 −B2)

(1 −B1)(1−B2)

(
1−

c+ p

µ

∫ 1

0

s
c+p
µ

−1

1 + s
ds

)

= 1−
4(A1 −B1)(A2 −B2)

(1 −B1)(1−B2)

[
1−

1

2
2F1

(
1, 1;

c+ p

µ
+ 1;

1

2

)]

= η (z ∈ U).(4.10)
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When B1 = B2 = −1, we consider the functions fj(z) ∈ Ap which satisfy the
hypothesis (4.5) and are given by

Kδ,λ
c,pfj(z) =

c+ p

µ
zp−

c+p
µ

∫ z

0

t
c+p
µ

−1

(
1 +Ajt

1− t

)
dt (j = 1, 2; z ∈ U).

Then, it follows from (4.8) and Lemma 2.4 that

φ(z) =
c+ p

µ

∫ 1

0

s
c+p
µ

−1

(
1− (1 +A1)(1 +A2) +

(1 +A1)(1 +A2)

1− sz

)
ds

= 1− (1 +A1)(1 +A2)

+ (1 +A1)(1 +A2)(1 − z)−1
2F1

(
1, 1;

c+ p

µ
+ 1;

z

z − 1

)

→ 1− (1 +A1)(1 +A2)

[
1−

1

2
2F1

(
1, 1;

c+ p

µ
+ 1;

1

2

)]
,

as z → −1.
This completes the proof of Theorem 4.1. �

Upon setting Aj = 1− 2ηj (0 ≤ ηj < 1), Bj = −1 (j = 1, 2), δ = c = 0 and
λ = 0 in Theorem 4.1, we obtain the following results.

Corollary 4.2. If the functions fj(z) ∈ Ap (j = 1, 2) satisfy the following

inequality:

ℜ

[
(1− µ)

f(z)

zp
+ µ

f ′(z)

zp−1

]
> ηj (0 ≤ ηj < 1; j = 1, 2),

then

ℜ

[
(1 − µ)

(f1 ∗ f2)(z)

zp
+ µ

(f1 ∗ f2)
′(z)

zp−1

]
> ρ1,

where

ρ1 = 1− 4(1− η1)(1 − η2)

[
1−

1

2
2F1

(
1, 1;

1

µ
+ 1;

1

2

)]
.

The result is the best possible.
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tions for revision which improved the content of the manuscript.
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