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SECOND-ORDER SYMMETRIC DUALITY IN

MULTIOBJECTIVE PROGRAMMING OVER CONES

Tilak Raj Gulati and Geeta Mehndiratta

Abstract. In this paper, some omissions in Mishra and Lai [13], have
been pointed out and their corrective measures have been discussed briefly.

1. Introduction

A pair of primal and dual problems in mathematical programming is called
symmetric if the dual of the dual is the primal problem. Dorn [6] introduced
the concept of symmetric duality in quadratic programming. His results were
extended to nonlinear convex programming problems by Dantzig et al. [4] and
later by Bazaraa and Goode [3] over arbitrary cones.

Mangasarian [11] introduced the concept of second-order duality for non-
linear problems. Since then, many authors [1, 2, 7, 9, 15, 16] have worked
on second-order symmetric duality. Mishra and Lai [13] studied Mond-Weir
type second-order multiobjective symmetric duality for the following pair of
problems:

(P) K−minimize f(x, y)−
1

2
pT∇yyf(x, y)p

subject to −∇y(λ
T f)(x, y)−∇yy(λ

T f)(x, y) ∈ C∗
2 ,

yT [∇y(λ
T f)(x, y) +∇yy(λ

T f)(x, y)] > 0,

λ ∈ K∗, x ∈ C1.

(D) K−maximize f(u, v)−
1

2
qT∇xxf(u, v)q

subject to ∇x(λ
T f)(u, v) +∇xx(λ

T f)(u, v) ∈ C∗
1 ,

uT [∇x(λ
T f)(u, v) +∇xx(λ

T f)(u, v)] 6 0,

λ ∈ K∗, v ∈ C2,

where f : Rn × R
m → R

k is a twice differentiable function of x and y, C1 and
C2 are closed convex cones with nonempty interiors in R

n and R
m, respectively,
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K is a closed convex pointed cone in R
k such that int K 6= φ and K∗ is its

positive polar cone.
The first term in the objectives of (P) and (D) is a k-vector, while the second

term is not a k-vector. Therefore the models and so the results in [13] seem to
be erroneous. Some of the other observations are as follows:

(i) For a vector function f : Rn ×R
m → R

k, it is not clear that what do the
authors mean by ∇xxf(x, y) and ∇yyf(x, y).

(ii) It is well known that the weak duality theorem gives a relation between
the objective functions of the primal and dual problems. It is not so in [13]
as the second-order terms in the two objective functions are missing from the
conclusion of the weak duality theorem.

(iii) In the strong duality theorem, the assumption that ∇yyy(λ̄
T f)(x̄, ȳ) is

negative definite is meaningless since ∇yyy(λ̄
T f)(x̄, ȳ) is not a matrix.

(iv) The authors simply state that the proof of their strong duality theorem
follows on the lines of [5], while the proof in [5] is full of errors (see [7]).

(v) The definitions of K-strongly K-second-order pseudoinvex functions
seem to be inappropriate due to the absence of a second-order derivative term
(see [1, 7, 15]).

2. Notations and preliminaries

Let C1 and C2 be closed convex cones in R
n and R

m, respectively, with
nonempty interiors. Let ∇xfi (∇yfi) denote n×1 (m×1) gradient vector with
respect to first (second) vector variable and let ∇xyfi denote the n×m matrix.
All vectors shall be considered as column vectors.

Definition 2.1 ([14]). The positive polar cone C∗ of a cone C is defined by

C∗ = {z : xT z ≧ 0 for all x ∈ C}.

We consider the following multiobjective programming problem:

(P1) K−minimize f(x)

subject to x ∈ X◦ = {x ∈ S : −g(x) ∈ Q},

where S ⊆ R
n, f : S → R

k, g : S → R
m, K and Q are closed convex pointed

cones with nonempty interiors in R
k and R

m, respectively.

Definition 2.2 ([10]). A point x̄ ∈ Xo is an efficient solution of (P1) if there
exists no x ∈ Xo such that f(x̄)− f(x) ∈ K\{0}.

For the definitions of K-η-bonvex, K-η-pseudobonvex and second-order F -
pseudoconvex functions, refer to [8].

3. Mond-Weir type second-order symmetric duality

We consider the following pair of Mond-Weir type second-order multiobjec-
tive symmetric dual programming problems which also aims to correct the dual
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pair considered in [13]:

Primal(MP)

K−minimize {f1(x, y)−
1

2
pT1 ∇yyf1(x, y)p1, . . . , fk(x, y)−

1

2
pTk∇yyfk(x, y)pk}

subject to −
k∑

i=1

λi(∇yfi(x, y) +∇yyfi(x, y)pi) ∈ C∗
2 ,

yT
k∑

i=1

λi(∇yfi(x, y) +∇yyfi(x, y)pi) ≧ 0,

λ ∈ intK∗, x ∈ C1,

Dual(MD)

K−maximize {f1(u, v)−
1

2
qT1 ∇xxf1(u, v)q1, . . . , fk(u, v)−

1

2
qTk ∇xxfk(u, v)qk}

subject to
k∑

i=1

λi(∇xfi(u, v) +∇xxfi(u, v)qi) ∈ C∗
1 ,

uT

k∑

i=1

λi(∇xfi(u, v) +∇xxfi(u, v)qi) ≦ 0,

λ ∈ intK∗, v ∈ C2,

where λ = (λ1, λ2, . . . , λk)
T ∈ R

k, C1 × C2 ⊂ S1 × S2 and for i = 1, 2, . . . , k,

(i) fi : S1 × S2 → R is a thrice differentiable function of x and y, and
(ii) pi and qi are vectors in R

m and R
n, respectively.

We will use p = (p1, p2, . . . , pk) and q = (q1, q2, . . . , qk).

Duality theorems

We do not need to restrict x ∈ C1 and v ∈ C2 in the programs (MP) and (MD)
respectively for proving Theorems 3.1 and 3.2. However, these restrictions are
required in the proof of strong and converse duality theorems.

Theorem 3.1 (Weak duality). Let (x, y, λ, p) be feasible for (MP) and (u, v,
λ, q) be feasible for (MD). Let

(i) f(·, v) be K-η1-bonvex in the first variable at u,
(ii) −f(x, ·) be K-η2-bonvex in the second variable at y, and
(iii) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2.

Then

{f1(u, v)−
1

2
qT1 ∇xxf1(u, v)q1, . . . , fk(u, v)−

1

2
qTk ∇xxfk(u, v)qk}

−{f1(x, y)−
1

2
pT1 ∇yyf1(x, y)p1, . . . , fk(x, y)−

1

2
pTk ∇yyfk(x, y)pk} /∈ K\{0}.

Proof. The proof follows on the lines of Theorem 3.2 [8]. �

The following weak duality theorem can also be proved.
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Theorem 3.2 (Weak duality). Let (x, y, λ, p) be feasible for (MP) and (u, v,
λ, q) be feasible for (MD). Let

(a1) λT f(·, v) be η1-pseudobonvex in the first variable at u,
(a2) −λT f(x, ·) be η2-pseudobonvex in the second variable at y,
(a3) η1(x, u) + u ∈ C1 and η2(v, y) + y ∈ C2,

or

(b1) λT f(·, v) be second-order F -pseudoconvex at u,
(b2) −λT f(x, ·) be second-order F -pseudoconvex at y,
(b3) Fx,u(ξ) + uT ξ ≧ 0 for ξ ∈ C∗

1 and Fv,y(η) + yT η ≧ 0 for η ∈ C∗
2 .

Then

{f1(u, v)−
1

2
qT1 ∇xxf1(u, v)q1, . . . , fk(u, v)−

1

2
qTk ∇xxfk(u, v)qk}

−{f1(x, y)−
1

2
pT1 ∇yyf1(x, y)p1, . . . , fk(x, y)−

1

2
pTk ∇yyfk(x, y)pk} /∈ K\{0}.

In the following theorems (MP)λ̄ and (MD)λ̄ respectively denote the problems
(MP) and (MD) when λ is fixed to be λ̄.

Theorem 3.3 (Strong duality). Let (x̄, ȳ, λ̄, p̄) be an efficient solution for

(MP). Suppose that

(i) ∇yyfi(x̄, ȳ) is positive definite for i = 1, 2, . . . , k and
k∑

i=1

λ̄ip̄
T
i ∇yfi(x̄, ȳ) ≧ 0 or

∇yyfi(x̄, ȳ) is negative definite for i = 1, 2, . . . , k and
k∑

i=1

λ̄ip̄
T
i ∇yfi(x̄, ȳ) ≦ 0,

(ii) the set {∇yfi(x̄, ȳ) +∇yyfi(x̄, ȳ)p̄i, i = 1, 2, . . . , k} is linearly indepen-

dent, and

(iii) Rk
+ ⊆ K.

Then, (x̄, ȳ, q̄ = 0) is feasible for (MD)λ̄, and the objective function values of

(MP) and (MD)λ̄ are equal. Furthermore, if the hypotheses of Theorem 3.1 or

Theorem 3.2 are satisfied for all feasible solutions of (MP)λ̄ and (MD)λ̄, then
(x̄, ȳ, q̄) is an efficient solution for (MD)λ̄.

Proof. Since (x̄, ȳ, λ̄, p̄) is an efficient solution for (MP), by the Fritz-John nec-
essary optimality conditions [14], there exist α ∈ K∗, β ∈ C2, γ ∈ R+, such
that the following conditions are satisfied at (x̄, ȳ, λ̄, p̄) (for simplicity, we write
∇xfi,∇xyfi instead of ∇xfi(x̄, ȳ),∇xyfi(x̄, ȳ) etc.):

(x − x̄)T [

k∑

i=1

αi(∇xfi −
1

2
(∇x(∇yyfip̄i))

T p̄i)

+

k∑

i=1

λ̄i(∇yxfi +∇x(∇yyfip̄i))
T (β − γȳ)] ≧ 0 for all x ∈ C1,
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(y − ȳ)T [

k∑

i=1

αi(∇yfi −
1

2
(∇y(∇yyfip̄i))

T p̄i)

+

k∑

i=1

λ̄i(∇yyfi +∇y(∇yyfip̄i))(β − γȳ)

−γ

k∑

i=1

λ̄i(∇yfi +∇yyfip̄i)] ≧ 0 for all y ∈ R
m,

[(β − γȳ)T (∇yfi +∇yyfip̄i)](λi − λ̄i) ≧ 0,

i = 1, 2, . . . , k for all λ ∈ intK∗,

[(β − γȳ)λ̄i − αip̄i]
T∇yyfi = 0, i = 1, 2, . . . , k,

βT

k∑

i=1

λ̄i(∇yfi +∇yyfip̄i) = 0,

γȳT
k∑

i=1

λ̄i(∇yfi +∇yyfip̄i) = 0,

(α, β, γ) 6= 0.
�

Following the proof of Theorem 3.4 [8], it can be proved that (x̄, ȳ, q̄) is an
efficient solution of (MD)λ̄.

Remark 3.1. In multiobjective programming for weak duality theorems, one
requires same λ for the primal and dual feasible solutions and so for strong
duality theorems, λ̄ corresponding to the optimal (weak efficient, efficient or
properly efficient) solution of the primal problem is required to be fixed in the
dual problem. Therefore the above proof gives that (x̄, ȳ, q̄ = 0) is an efficient
solution for (MD)λ̄ and not that (x̄, ȳ, λ̄, q̄ = 0) is an efficient solution for
(MD). In the literature [12, 13, 16] optimality for the dual problem (Wolfe or
Mond-Weir type) has been claimed, which is not correct.

Theorem 3.4 (Converse duality). Let (ū, v̄, λ̄, q̄) be an efficient solution for

(MD). Suppose that

(i) ∇xxfi(ū, v̄) is positive definite for all i = 1, 2, . . . , k and
k∑

i=1

λ̄iq̄
T
i ∇xfi(ū, v̄) ≧ 0 or

∇xxfi(ū, v̄) is negative definite for all i = 1, 2, . . . , k and
k∑

i=1

λ̄iq̄
T
i ∇xfi(ū, v̄) ≦ 0,

(ii) the set {∇xfi(ū, v̄) +∇xxfi(ū, v̄)q̄i, i = 1, 2, . . . , k} is linearly indepen-

dent, and

(iii) R
k
+ ⊆ K.
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Then (ū, v̄, p̄ = 0) is feasible for (MP)λ̄, and the objective function values of

(MP)λ̄ and (MD) are equal. Furthermore, if the hypotheses of Theorem 3.1 or

Theorem 3.2 are satisfied for all feasible solutions of (MP)λ̄ and (MD)λ̄, then
(ū, v̄, p̄) is an efficient solution for (MP)λ̄.

Proof. Follows on the lines of Theorem 3.3. �
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