DOI QR코드

DOI QR Code

Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

  • Kim, Jae-Hwan (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Park, Eun-Young (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Ha, Ho-Kyung (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Jo, Chan-Mi (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Lee, Won-Jae (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Lee, Sung Sill (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Kim, Jin Wook (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University)
  • 투고 : 2015.09.16
  • 심사 : 2015.11.30
  • 발행 : 2016.02.01

초록

Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than $50{\mu}M$. Nanoparticles prepared from ${\beta}$-lactoglobulin (${\beta}$-lg) were successfully developed. The ${\beta}$-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. Fluorescein isothiocynate-conjugated ${\beta}$-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored $H_2O_2$-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

키워드

참고문헌

  1. Aggarwal, B. B., S. Shishodia, C. de la Lastra, I. Villegas, and A. R. Martin. 2006. Resveratrol in Health and Disease. CRC Press, Boca Raton, FL, USA. pp. 33-54.
  2. Beckman, J. S. and W. H. Koppenol. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:C1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  3. Bravo, L. 1998. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 56:317- 333.
  4. Chen, L. and M. Subirade. 2005. Chitosan/${\beta}$-lactoglobulin coreshell nanoparticles as nutraceutical carriers. Biomaterals 26:6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011
  5. Cheng, J. C., J. G. Fang, W. F. Chen., B. Zhou., L. Yang, and Z. L. Liu. 2006. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorg. Chem. 34:142-157. https://doi.org/10.1016/j.bioorg.2006.04.001
  6. Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildemann. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224- 2242. https://doi.org/10.1016/j.fct.2011.12.029
  7. de la Lastra, C. A. and I. Villegas. 2005. Resveratrol as an antiinflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res. 49:405-430. https://doi.org/10.1002/mnfr.200500022
  8. de la Lastra, C. A. and I. Villegas. 2007. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans. 35:1156-1160. https://doi.org/10.1042/BST0351156
  9. Dinkova-Kostova, A. T., W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yammamoto, and P. Talalay. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzyems that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99:11908-11913. https://doi.org/10.1073/pnas.172398899
  10. Gracia-Julia, A., M. Rene, M. Cortes-Munoz, L. Picart, T. Lopez- Pedemonte, and D. Chevalier. 2008. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll. 22:1014-1032. https://doi.org/10.1016/j.foodhyd.2007.05.017
  11. Guha, P., A. Dey, M. V. Dhyani, R. Sen, M. Chatterjee, S. Chattopadhyay, and S. K. Bandyopadhyay. 2010. Calpain and caspase orchestrated death signal to accomplish apoptosis induced by resveratrol and its novel analog hydroxstilbene-1 in cancer cells. J. Pharmacol. Exp. Ther. 334:381-394. https://doi.org/10.1124/jpet.110.167668
  12. Ha, H. K., J. W. Kim, M. R. Lee, W. Jun, and W. J. Lee. 2015. Cellular uptake and cytotoxicity of ${\beta}$-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian Australas. J. Anim. Sci. 28:420-427. https://doi.org/10.5713/ajas.14.0761
  13. Hanakova, A., K. Bogdanova, K. Tomankova, S. Binder, R. Bajgar, K. Langova, M. Kolar, J. Mosinger, and H. Kolarova. 2014. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 158:201-207. https://doi.org/10.5507/bp.2012.057
  14. Herraiz, T. and J. Galisteo. 2004. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res. 38:323-331. https://doi.org/10.1080/10611860310001648167
  15. Hidalgo, I. J., T. J. Raub, and R. T. Borchardt. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736-749. https://doi.org/10.1016/S0016-5085(89)80072-1
  16. Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2012. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr. Polym. 89:362-370. https://doi.org/10.1016/j.carbpol.2012.03.015
  17. Ignatowicz, E. and W. Baer-Dubowska. 2001. Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol. J. Pharmacol. 53:557-569.
  18. Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13: 76-86. https://doi.org/10.1101/gad.13.1.76
  19. Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satho, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313-322. https://doi.org/10.1006/bbrc.1997.6943
  20. Jaramillo, M. C. and D. D. Zhang. 2015. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:2179- 2191.
  21. Kansanen, E., H. K. Jyrkkanen, and A. L. Levonen. 2012. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 52:973- 982. https://doi.org/10.1016/j.freeradbiomed.2011.11.038
  22. Kao, C. L., L. K. Chen, Y. L. Chang, M. C. Yung, C. C. Hsu, Y. C. Chen, W. L. Lo, S. J. Chen, H. H. Ku, and S. J. Hwang. 2010. Resveratrol protects human endothelium from H(2)O(2)- induced oxidative stress and senescence via SirT1 activation. J. Atheroscler. Thromb. 17:970-979. https://doi.org/10.5551/jat.4333
  23. Kim, Y. S., J. W. Sull, and H. J. Sung. 2012. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells. Mol. Biol. Rep. 39:8709-8716. https://doi.org/10.1007/s11033-012-1728-3
  24. Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  25. Mates, J. M., C. Perez-Gomez, and I. N. Castro. 1999. Antioxidant enzymes and human diseases. Clin. Biochem. 32:595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  26. Mikula-Pietrasik, J., A. Kuczmarska, M. Kucinska, M. Murias, M. Wierzchowski, M. Winckiewicz, R. Staniszewski, A. Breborowicz, and K. Ksiazek. 2012. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial celldependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 15:361-376. https://doi.org/10.1007/s10456-012-9266-0
  27. Nakazato, T., K. Ito, Y. Ikeda, and M. Kizaki. 2005. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin. Cancer Res. 11:6040-6049. https://doi.org/10.1158/1078-0432.CCR-04-2273
  28. Napierska, D., L. C. J. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846-853. https://doi.org/10.1002/smll.200800461
  29. Ou, B., M. Hampsch-Woodill, and R. L. Prior. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49:4619-4626. https://doi.org/10.1021/jf010586o
  30. Powell, J. J., N. Faria, E. Thomas-McKay, and L. C. Pele. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34:J226-J233. https://doi.org/10.1016/j.jaut.2009.11.006
  31. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Renaud, S. and M. de Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523-1526. https://doi.org/10.1016/0140-6736(92)91277-F
  33. SAS Institute Inc. 2003. SAS User's Guide: version 9.1 Cary, NC, USA.
  34. Schieber, M. and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  35. Seeram, N. P., V. V. Kulkarni, and S. Padhye 2006. Sources and chemistry of resveratrol. Resveratrol health and disease. CRC Press, Boca Raton, FL, USA. 17-32.
  36. Shankar, S., I. Siddiqui, and R. K. Srivastava. 2007. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell. Biochem. 304:273-285. https://doi.org/10.1007/s11010-007-9510-x
  37. Soleas, G. J., E. P. Diamandis, and D. M. Goldberg. 1997. Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal. 11:287-331. https://doi.org/10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4
  38. Sporn, M. B. and K. T. liby. 2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:564- 571. https://doi.org/10.1038/nrc3278
  39. Taguchi, K., H. Motohashi, and M. Yamamoto. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123-140. https://doi.org/10.1111/j.1365-2443.2010.01473.x
  40. Tinhofer, I., D. Bernhard, M. Senfter, G. Anether, M. Loeffler, G. Kroemer, R. Kofler, A. Csordas, and R. Greil. 2001. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J. 15:1613-1615. https://doi.org/10.1096/fj.00-0675fje
  41. Win, K. Y. and S. S. Feng. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713- 2722. https://doi.org/10.1016/j.biomaterials.2004.07.050
  42. Yaseen, A. A. 2011. The Natural Polyphenol Resveratrol Potentiates the Lethality of HDAC Inhibitors in Acutr Myelogenous Leukemia Cells through Multiple Mechanisms. Master's Thesis, Virginia Commonwealth University, Richmond, VA, USA.
  43. Yin, H., H. P. Too, and G. M. Chow. 2005. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818-5826. https://doi.org/10.1016/j.biomaterials.2005.02.036
  44. Zhang, J., X. G. Chen, W. B. Peng, and C. S. Liu. 2008. Uptake of oleoyl-chitosan nanoparticles by A549 cells. Nanomedicine 4:208-214. https://doi.org/10.1016/j.nano.2008.03.006
  45. Zheng, Y., Y. Liu, J. Ge, X. Wang, L. Liu, Z. Bu, and P. Liu. 2010. Resveratrol protects human lens epithelial cells against H2O2- induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis. 16:1467-1474.

피인용 문헌

  1. Elevation of tumour markers TGF-β, M2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris vol.17, pp.1, 2017, https://doi.org/10.1186/s12885-017-3883-3
  2. Models for Plant-Derived Compounds vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/4586068
  3. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies vol.9, pp.11, 2017, https://doi.org/10.3390/nu9111231
  4. Cytoprotective Effects of Natural Compounds against Oxidative Stress vol.7, pp.10, 2018, https://doi.org/10.3390/antiox7100147
  5. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments vol.8, pp.5, 2018, https://doi.org/10.1007/s13204-018-0758-0
  6. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation vol.16, pp.1, 2018, https://doi.org/10.1186/s12967-018-1509-4
  7. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review pp.1476-4180, 2018, https://doi.org/10.1080/14764172.2018.1469767
  8. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040925
  9. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement vol.311, pp.10, 2016, https://doi.org/10.1007/s00403-019-01964-3
  10. Nanoencapsulated dietary polyphenols for cancer prevention and treatment: successes and challenges vol.15, pp.11, 2016, https://doi.org/10.2217/nnm-2019-0398
  11. Formulation design, optimization and in vivo evaluation of oral co-encapsulated resveratrol-humic acid colloidal polymeric nanocarriers vol.26, pp.9, 2021, https://doi.org/10.1080/10837450.2021.1966442