References
- AOAC. 1990. Offcial Methods of Analysis. 15th Edn. Association of Official Analytical Chemists, Arlington, VA, USA.
- Filya, I. 2003. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 95:1080-1086. https://doi.org/10.1046/j.1365-2672.2003.02081.x
- Hao, W., H. L. Wang, T. T. Ning, F. Y. Yang, and C. C. Xu. 2015. Aerobic stability and succession of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian Australas. J. Anim. Sci. 28:816-826. https://doi.org/10.5713/ajas.14.0837
- Henderson, A. R., P. McDonald, and M. K. Woolford. 1972. Chemical changes and losses during the ensilage of wilted grass treated with formic acid. J. Sci. Food Agric. 23:1079-1087. https://doi.org/10.1002/jsfa.2740230905
- Heron, S. J. E., J. F. Wilkinson, and C. M. Duffus. 1993. Enterobacteria associated with grass and silages. J. Appl. Bacteriol. 75:13-17. https://doi.org/10.1111/j.1365-2672.1993.tb03401.x
- Hu, X., W. Hao, H. Wang, T. Ning, M. Zheng, and C. Xu. 2015. Fermentation characteristics and lactic acid bacteria succession of total mixed ration silages formulated with peach pomace. Asian Australas. J. Anim. Sci. 28:502-510. https://doi.org/10.5713/ajas.14.0508
- McDonald, P. 1981. The biochemistry of silage. John Wiley & Sons, Ltd., New York, NY, USA.
- McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The biochemistry of silage. 2nd Ed. Chalcombe Publications, Welton, UK.
- Nishino, N., H. Harada, and E. Sakaguchi. 2003. Evaluation of fermentation and aerobic stability of wet brewers' grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 83:557-563. https://doi.org/10.1002/jsfa.1395
- Ohyama, Y., S. Masaki, and S. I. Hara. 1975. Factors influencing aerobic deterioration of silages and changes in chemical composition after opening silos. J. Sci. Food Agric. 26:1137-1147. https://doi.org/10.1002/jsfa.2740260811
- Owens, V. N., K. A. Albrecht, R. E. Muck, and S. H. Duke. 1999. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Sci. 39:1873-1880. https://doi.org/10.2135/cropsci1999.3961873x
- Pahlow, G., R. E. Muck, F. Driehuis, S. J. Elferink, and S. F. Spoelstra. 2003. Microbiology of ensiling. In: Silage science and technology (Eds. D. R. Buxton, R. E. Muck, and J. H. Harrison). American Society of Agronomy, Madison, Wi, USA. pp. 31-93.
- Ranjit, N. K. and L Jr. Kung. 2000. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 83:526-535. https://doi.org/10.3168/jds.S0022-0302(00)74912-5
- Rooke, J. A. and R. D. Hatfield. 2003. Biochemistry of ensiling. In: Silage Science and Technology (Eds. D. R. Buxton, R. E. Muck, and J. H. Harrison). American Society of Agronomy, Madison, WI, USA. pp. 95-139.
- Seppala, A., T. Heikkila, M. Maki, H. Miettinen, and M. Rinne. 2013. Controlling aerobic stability of grass silage-based total mixed rations. Anim. Feed Sci. Technol. 179:54-60. https://doi.org/10.1016/j.anifeedsci.2012.11.011
- Smith, L. H. 1962. Theoretical carbohydrates requirement for alfalfa silage production. Agron. J. 54:291-293. https://doi.org/10.2134/agronj1962.00021962005400040003x
- Spoelstra, S. F., M. G. Courtin, and J. A. C. Van Beers. 1988. Acetic acid bacteria can initiate aerobic deterioration of whole crop maize silage. J. Agric. Sci. 111:127-132. https://doi.org/10.1017/S0021859600082915
- Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
- Wilkinson, J. M. and D. R. Davies. 2013. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 68:1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
- Woolford, M. 1990. The detrimental effects of air on silage. J. Appl. Microbiol. 68:101-116.
- Xu, C., Y. Cai, N. Moriya, and M. Ogawa. 2007a. Nutritive value for ruminants of green tea grounds as a replacement of brewers' grains in totally mixed ration silage. Anim. Feed Sci. Technol. 138:228-238. https://doi.org/10.1016/j.anifeedsci.2006.11.014
- Xu, C. C., Y. Cai, J. G. Zhang, and M. Ogawa. 2007b. Fermentation quality and nutritive value of a total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter. J. Anim. Sci. 85:1024-1029. https://doi.org/10.2527/jas.2005-628
Cited by
- Leyss) silage vol.73, pp.3, 2018, https://doi.org/10.1111/gfs.12355
- Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage vol.31, pp.2, 2018, https://doi.org/10.5713/ajas.17.0183
- Yeast population dynamics on air exposure in total mixed ration silage with sweet potato residue vol.91, pp.1, 2020, https://doi.org/10.1111/asj.13397
- Ensiling Total Mixed Ration for Ruminants: A Review vol.10, pp.6, 2020, https://doi.org/10.3390/agronomy10060879
- Effects of Pediococcus pentosaceus on fermentation, aerobic stability and microbial communities during ensiling and aerobic spoilage of total mixed ration silage containing alfalfa ( Medicago sativa L vol.66, pp.4, 2016, https://doi.org/10.1111/grs.12272
- Replacing Alfalfa with Paper Mulberry in Total Mixed Ration Silages: Effects on Ensiling Characteristics, Protein Degradation, and In Vitro Digestibility vol.11, pp.5, 2016, https://doi.org/10.3390/ani11051273
- Microbial profile during fermentation and aerobic stability of ensiled mixtures of maize stover and banana pseudostem in South Ethiopia vol.132, pp.1, 2022, https://doi.org/10.1111/jam.15183