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We consider a multiserver system with two classes of 
customers with preemption, which is a widely used system 
in the analysis of cognitive radio networks. It is known 
that the optimal admission control for this system is of 
threshold type. We express the expected total discounted 
profit using the total number of customers, thus reducing 
the stochastic optimization problem with a two-
dimensional state space to a problem with a one-
dimensional birth-and-death structure. An efficient 
algorithm is proposed for the calculation of the expected 
total discounted profit. 
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I. Introduction 

Nowadays, although the most important yet scarce resource 
for wireless communications is the radio spectrum, the utilization 
of the spectrum is very low in the real world [1]. Cognitive radio 
networks have emerged as a promising technology in the hope of 
solving this problem [2]. Cognitive radio networks contain two 
types of users — primary and secondary. Primary users have 
access to the licensed spectrum with a preemptive priority,   
and secondary users can opportunistically use the spectrum 
whenever it is not in use by primary users. Hence, to maximize 
profit, a service provider serving both primary and secondary 
users must attract as many secondary users as possible, while not 
diminishing performance for its primary users. 

We consider a two-class preemptive loss system, which is 
widely used in the analysis of cognitive radio networks. There 
are two classes of customers — primary users and secondary 
users. For i = 1, 2, customers of class i arrive according to a 
Poisson process with intensity λi; these two Poisson processes 
are assumed to be independent. There are C identical parallel 
servers, of which the service times for all customers are 
independent and exponentially distributed with mean μ–1, 
unless terminated prematurely. Class-1 customers (primary 
users) have preemptive priority over class-2 customers 
(secondary users). Thus, if all C servers are busy upon the 
arrival of a class-1 customer, then a class-2 customer (if exists) 
is preempted. A preempted class-2 customer is withdrawn from 
the system permanently. Whenever a class-2 customer is 
preempted, a preemption cost, K, is incurred, while a reward, R, 
is earned whenever a class-2 customer departs successfully. 
The aim of this study is to find the optimal admission control 
policy for class-2 customers to maximize the expected total 
discounted profit. For related works, see [3]–[5]. 
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Turhan and others [3]–[4] showed that the optimal policy is 
of threshold type and that the threshold depends only on the 
total number of customers in the system. Furthermore, Turhan 
and others [4] expressed the long-run average profit under the 
threshold policy in terms of the stationary distribution of the 
total number of customers in the system. With this, the issue of 
maximizing the long-run average profit is reduced from a 
stochastic dynamic programming problem with a two-
dimensional Markov process, to a problem with a one-
dimensional birth-and-death process. 

In this work, we express the expected total discounted profit 
under the threshold policy using a Markov process representing 
the total number of customers. Thus, the maximization of the 
expected total discounted profit is reduced from a stochastic 
dynamic programming problem with a two-dimensional state 
space to a problem with a one-dimensional birth-and-death 
structure. Using the reduced one-dimensional birth-and-death 
structure, we also provide an efficient algorithm for the 
calculation of the expected total discounted profit. This 
algorithm makes it possible to determine the optimal threshold 
within a short time. 

II. Optimal Admission Problem 

1. Problem Definition 

Since class-1 customers (primary users) and class-2 

customers (secondary users) arrive according to independent 
Poisson processes, and service times are exponentially 
distributed, the system can be represented as a continuous-time 
Markov decision process with a two-dimensional state space. 
Figure 1 shows the transition diagram for the Markov decision 
process when there is no admission control.  

Let X(t) and Y(t) be the number of class-1 and class-2 
customers, respectively, at time t. Then, (X(t), Y(t)) defines the 
state of the system. Now, let S be the state space for (X(t), Y(t)); 
that is, the set of all pairs (x, y) of non-negative integers such 
that     .x y C   Further, let S1 be the subset of S that consists of 
preemptive states; that is,  1  ( , ) : , 1 .S x y S x y C y       

Upon the arrival of a class-2 customer, the system decides 
whether the customer may be accepted. However, a class-1 
customer is always admitted if there is a free server. A class-1 
customer who arrives when all the servers are busy is accepted 
by preempting a class-2 customer, if there exists a class-2 
customer in the service. Preempted class-2 customers are lost. 
An incoming class-1 customer is lost in the case that, on arrival, 
every server is busy serving class-1 customers. Hence, X(t) 
does not depend on any adopted admission policy, though Y(t)  
does. 

If the discounting rate is ,  > 0, then the total discounted 
profit is given by 
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Fig. 1. Transition diagram of two-dimensional Markov decision process without admission control. 
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where D2(t) is the number of successful class-2 customer 
departures until time t, N1(t) is the number of class-1 customer 
arrivals until time t, and 1{∙} denotes the indicator of {∙}; that is, 
1{∙} is “1” if {∙} holds, and “0” otherwise.  

By applying Palm calculus [6] to (1), the expected total 
discounted profit under a policy p, given the initial state (X(0), 
Y(0)) = (X, Y), is given by 
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where ( , | , )p
t x y x y   is the probability of ( ( ), ( )) ( , )X t Y t x y   

given that (X(0), Y(0)) = (x, y) under policy p. The objective of 
the optimization problem is to find a policy p that maximizes 
the expected total discounted profit, ( , ).pJ x y  

2. Reduced Markov Process under Optimal Policy 

Turhan and others [3] showed that the optimal policy is of 
threshold type and that the threshold depends only on the total 
number of customers in the system. Under a threshold policy 
with a threshold T (that is, class-2 customers can be admitted 
only when the total number of customers is less than T), the 
total number of customers ( ) ( ) ( )Z t X t Y t   is a   
Markov process, with the infinitesimal generator T Q  
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We now present the expected total discounted profit under 
the threshold policy in terms of the infinitesimal generator of 
Z(t). Since Z(t) has a birth-and-death structure, we can reduce 
the dimension of the state space in the stochastic dynamic 
programming from two to one. 

From this point on, we use ( , )TJ x y  and  , | ,T
t x y x y    

instead of ( , )pJ x y  and  , | , ,P
t x y x y    respectively, if the 

policy p is the threshold policy with threshold T. Since Y(t) = 
Z(t) – X(t) and  1{( ( ), ( )) } { ( ) } ( )1 1 1 ,X t Y t S Z t C X t C     we have 
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where ( | )T
t z z   is the probability of ( )Z t z  given that  

Z(0) = z under the threshold policy with threshold T; and 

( | )t x x  is the probability of ( )X t x  given that X(0) = x. 

Note that ( | )t x x   does not depend on the admission policy 

for the class-2 customers. Substituting the above equations into 

(2) yields 
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with 
k

zf denoting the zth component of column vector 
1( ) ,k k  f I Q ξ  where ξ  is a column vector whose zth 

component is 1 { }1 ; 0,1, , .z z CR z K z C         

Note that we can easily compute fk using the birth-and-death 
structure of Qk. Using the Thomas algorithm [7], which has a 
linear computational complexity in C, we can obtain the 
following formulae to calculate the expected total discounted 
profit under the threshold policy with threshold T: 
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III. Numerical Examples 

In this section, we provide some numerical examples of 
finding the optimal threshold using the birth-and-death process 
Z(t). For Figs. 2 and 3, we set C = 100; μ = 1; R = 1; K = 2; and 
(λ1, λ2) = (40, 20), (40, 70), (80, 20), (80, 70), (100, 20), and 
(100, 70). 

Figure 2 shows the plot of the expected total discounted 
profit with the discounting rate  = 1, initial state (X(0), Y(0)) = 
(30, 30), and varying threshold T. It is observed that, as the 
threshold T increases, the expected total discounted profit also 
increases until T reaches the optimal value, and decreases 
thereafter. Additionally, the threshold is more dependent on the 
value of λ1 than on that of λ2. Note that the expected total 
discounted profit can take a negative value if T is large, because 
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Fig. 2. Expected total discount profit ( , )J x yT
α  with C = 100, 

µ = 1, R = 1, K = 2, and (X(0), Y(0)) = (30, 30). 
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Fig. 3. Optimal threshold with C = 100, µ = 1, R = 1, and K = 2.

0 2 4 6 8 10
75 

80 

85 

90 

95 

100 

 

O
pt

im
al

 th
re

sh
ol

d 

λ1=40, λ2=20 

λ1=40, λ2=70 

λ1=80, λ2=20 

λ1=80, λ2=70 

λ1=100, λ2=20

λ1=100, λ2=70

 
 
class-2 customers may initially exist.  

Figure 3 shows the relationship between the optimal threshold 
and the discount rate . The optimal threshold decreases as the 
class-1 arrival rate (λ1) increases and shows greater dependence 
on the value of λ1 than on that of (λ2). This is consistent with 
intuition, since preemptions occur more frequently when the 
class-1 arrival rate (λ1) increases, and other conditions remain the 
same. Additionally, the optimal threshold decreases as the class-2 
arrival rate λ2 increases. This is also consistent with intuition, 
since if the arrival rate of class-2 customers λ2 is high, then there 
is a greater possibility of admitting class-2 customers. Therefore, 
it is not necessary to admit class-2 customers to the system under 
inferior circumstances.  

IV. Conclusion 

For the multiserver system containing two classes of 

customers with preemption, the expected total discounted 
profit has been presented in terms of the infinitesimal generator 
of the total number of customers. Thus, to maximize the 
expected total discounted profit, a stochastic dynamic 
programming problem with a two-dimensional state space has 
been reduced to a problem with a one-dimensional birth-and-
death structure. Using this reduced state space model, we can 
easily calculate the expected total discounted profit and 
determine the optimal threshold in a short time. This can be 
applied to practical problems of cognitive radio networks. 
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