복합적 자료-알고리즘 자료처리 방식을 적용한 자료처리 시스템 설계 방안 연구

Study on Data Control System Design Method with Complex Data-Algorithm Data Processing

  • 투고 : 2015.07.07
  • 심사 : 2015.09.10
  • 발행 : 2015.09.30

초록

본 연구에서는 수재해 정보 플랫폼 내 자료처리 시스템 설계를 위해 자료처리 과정의 복잡도를 분석하고 이에 따른 설계 방안을 제시하였다. 일반적으로 자료를 수집하고 분석하는 시스템은 자료와 알고리즘의 자료처리 과정이 고정된 고정 자료-알고리즘 자료처리 방식을 사용한다. 하지만 시스템의 복잡도가 증가하면 자료처리 시스템에서 관리해야 하는 자료처리 과정의 수가 급증하는 문제가 발생한다. 이를 해결하기 위해 자료와 알고리즘 사이에 인터페이스가 존재하는 동적 자료-알고리즘 자료처리 방식을 적용할 수 있다. 각 방식의 장단점을 분석한 뒤, 수재해 정보 플랫폼에 최적화된 자료처리 시스템의 설계안을 제시할 수 있었다.

In this study, we present the architecture design of data control system in water hazard information platform with analyzing the complexity of the data processing. Generally, data control systems in data collection and analysis platforms base on the constant data-algorithm data processing meaning that data processing between data and algorithm is fixed. But the number of data processing in data control system is rapidly increasing because of increasing of complexity of system. To hold down the number of data processing, dynamic data-algorithm data processing is able to be applied to data control system. After comparison each data-algorithm data processing method, we suggest design method of the data control system optimizing water hazard information platform.

키워드

참고문헌

  1. 이범희, "회귀분석에 의한 도시홍수 예보시스템의 개발", 대한토목학회논문집 B, 제 30권 4B호, pp. 347-359, 2010.
  2. 김계현, 윤천주, 이상일, "GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구", 한국수자원학회논문집, 제 35권 4호, pp. 259-366, 2002.
  3. 이주헌, 정상만, 김재한, 고양수, "가뭄모니터링 시스템 구축:II. 정량적 가뭄 모니터링 및 가뭄전망기법 개발", 한국수자원학회논문집, 제 39권 9호, pp. 801-812, 2009.
  4. 심재훈, 김필식, 김선주, 권형중, 박현준, "농업용수 수요.공급의 계측에 의한 물 관리 시스템 연구", 한국수자원학회 학술발표회, pp. 628-632, 2012.
  5. NOAA-USGS Debris Flow Task. NOAA-USGS debris-flow warning system-final report, 2005, pp. 1-24.
  6. Arizona Department of Water Resources. Well registry quick reference user's guide for well registry web application, 2012, pp. 2-8.
  7. Public Works Research Institute, ICHARM. IFAS ver.2.0 technical manual, 2012, pp 11-12.
  8. Daniele D'Agostino, Andrea Clematis, Antonella Galizia, Alfonso Quarati, Emanuele Danovaro, Luca Roverelli, Gabriele Zereik, Dieter Kranzlmuller, Michael Schiffers, Nils gentschen Felde, Christian Straube, Olivier Caumont, Evelyne Richard, Luis Garrote, Quillon Harpham, H. R. A. Jagers, Vladimir Dimitrijevic, Ljiljana Dekic, Elisabetta Fiorii, Fabio Delogu and Antonio Parodi, "The DRIHM project: a flexible approach to integrate HPC, grid and cloud resources for hydro-meteorological research. In: High Performance Computing, Networking, Storage and Analysis," SC14: International Conference for. IEEE, pp. 536-546, 2014.