
ETRI Journal, Volume 37, Number 3, June 2015 © 2015 Yang Shi et al. 573
http://dx.doi.org/10.4218/etrij.15.0114.0657

We introduce the idea of a forward-secure undetachable
digital signature (FS-UDS) in this paper, which enables
mobile agents to generate undetachable digital signatures
with forward security of the original signer’s signing key.
The definition and security notion of an FS-UDS scheme
are given. Then, the construction of a concrete FS-UDS
scheme is proposed; and the proof of security for the
proposed scheme is also provided. In the proposed scheme,
mobile agents need not carry the signing key when they
generate digital signatures on behalf of the original signer,
so the signing key will not be compromised. At the same
time, the encrypted function is combined with the original
signer’s requirement; therefore, misuse of the signing
algorithm can be prevented. Furthermore, in the case
where a hacker has accessed the signing key of the original
signer, he/she is not able to forge a signature for any time
period prior to when the key was obtained.

Keywords: Mobile agents, forward-secure,
undetachable digital signatures.

Manuscript received June 3, 2014; revised Mar. 7, 2015; accepted Mar. 19, 2015.
 Yang Shi (shiyang@tongji.edu.cn), Qinpei Zhao (qinpeizhao@tongji.edu.cn), and Qin Liu

(corresponding author, sse508lab@126.com) are with the School of Software Engineering,
Tongji University, Shanghai, China.

I. Introduction

With the fast development of distributed computing
technologies, mobile agent systems and related technologies
have attracted great interest. A mobile agent system consists
primarily of mobile agents and platforms. An agent is a type of
computer software that acts autonomously on behalf of a
person or an organization [1].

Platforms that can create, execute, interpret, transfer, and
terminate agents are agent systems. Mobile agents have a high
mobility to transport themselves from one platform in a
network to another and can automatically suspend execution
on one platform and migrate to another to resume their
computations. The ability to travel enables a mobile agent to
move to a destination agent system that contains an entity in
which the agent wants to interact.

The advent of electronic commerce practices has increased
the demand for interoperable applications that allow for the
flexible exchange of data across enterprise borders, different
IT-platforms, and different information systems. For example,
an intelligent trade agent (ITA) that roams a network [2] buying
and selling goods through three different merchant’s hosts
within a network is shown in Fig. 1. Moreover, many mobile
agent–based technologies have been developed and put into
practice, such as those in [3]–[8].

The aforementioned applications cannot be realized securely
without suitable security technologies. However, the fact is that
mobile agents are exposed to serious security threats; for
example, malicious hosts might endanger passing mobile
agents. As security threats have become a bottleneck in the
development and maintenance of mobile agent–based
applications [9], there has become an urgent calling for
efficient and practical security solutions that can achieve a good

Secure Mobile Agents in eCommerce with
Forward-Secure Undetachable Digital Signatures

Yang Shi, Qinpei Zhao, and Qin Liu

574 Yang Shi et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0657

Fig. 1. ITA roams network buying and selling goods.

(2
)

M
ig

ra
te

(0) Requirements and list of shops

(1) Customer instructs agent to start buying Customer’s
computer

Mobile
agent

(3) Migrate (4) Migrate

(5) Migrate

Shop 1’s server Shop 2’s server Shop 3’s server

Customer

balance between security and mobility in mobile agent–related
studies.

Security problems of mobile agent systems stemming from
the mobility of mobile agents can be categorized into the
following two subjects [10]: agent-side security and platform-
side security. This study focuses on agent-side security and
aims to provide a practical security solution under mobility.
Furthermore, the study addresses the worst situation of agent-
side threats when the agents run in an untrusting environment
or, more specifically, the agents are subject to attacks from
malicious platforms. Because mobile agents frequently migrate
among various hosts (platforms1)) due to their mobility, they
run the risk of exposing themselves to untrusting environments
more often than static agents. In such environments, the
proposed forward-secure undetachable digital signature
technique can provide the integrity and validity of business
contracts, as well as safeguarding the confidentiality of the
user’s private signing key.

II. Mobile Agent Security and Undetachable Digital
Signatures

The protection of a mobile agent from possible attacks by
malicious hosts is referred to as the problem of malicious hosts.
Hohl [11] identified a considerable number of such attacks
including spying out code, data, and control flow; manipulation
of code, data, and control flow and so on. Thus, threats from
potentially malicious hosts have become a great obstacle to the
widespread deployment of mobile agent technology–based
applications in electronic commerce.

In traditional digital signature schemes, mobile agents need
to carry the implementation of the signing algorithm with the
private key to generate signatures on behalf of the original user,

1) In the study, host and platform are used interchangeably to refer a place where mobile

agents operate.

Fig. 2. Segment of Java byte code of agent.

Key in source
file

Key in Java
byte code
(.class)

so an adversary can misuse the signing algorithm or even
extract the private signing key from the agent. For example, an
attacker who has control of a malicious host can find the
signing key from Java byte code, as illustrated in Fig. 2 (that is,
a screen snapshot of a Hex file editor).

Hence, Sander and Tschudin proposed the idea of
undetachable digital signatures [12], which allows a mobile
agent to effectively produce a digital signature inside a remote
and possibly malicious host without the host being able to
deduce the agent’s secret (for example, the signing key) or
reuse the implementation of the signing algorithm for arbitrary
documents.

The general mathematical description of an undetachable
signature function is as follows. Suppose that Sig is the signing
algorithm used by C (a customer) to produce the digital
signature z = Sig(m) for an arbitrary message m. The
undetachable signing algorithm fSigned should subject to (1),
where f is an auxiliary binding function.

Signed Sig .f f  (1)

To create an undetachable signature on a shop’s server, (2) is
computed by calling fSigned from the customer’s mobile agent.

Signed ().z f m (2)

Although the signature function Sig is not known by others,
everyone can verify the validity of message m by using a
specialized verification algorithm.

Since the first concrete construction of an undetachable
digital signature based on RSA [13] was published in 2001, a
variety of undetachable signature schemes have been proposed
[13]–[17]. The latest one to date, [18], is a threshold version
using conic curves, which was proposed in 2013.

At the same time, digital signature schemes also face a
significant key leakage problem on the original signer’s local
host, while undetachable signatures only protect the signing
key from leakage on potentially malicious remote hosts. In the
event that the customer’s host is infiltrated by an attacker, there
would be a serious security problem because the original

ETRI Journal, Volume 37, Number 3, June 2015 Yang Shi et al. 575
http://dx.doi.org/10.4218/etrij.15.0114.0657

private signing key would be compromised.
The possibility of the occurrence of this security problem

increases with the fast development of advanced persistent
threats (APTs), such as “Operation Aurora” and “Stuxnet
Worm.”

Intuitively, a forward-secure signature technique could be
used to control this risk. The principles behind forward-secure
signature schemes are discussed briefly in [19]–[21]. In these
schemes, the whole lifetime of a cryptosystem is divided into a
number of time periods. At the end of each time period, the
user computes a new signing key for the next time period using
a one-way function and the old key is then erased. In this way,
the user’s singing key changes for different time periods, but
the public key (verification key) is fixed during the whole
lifetime. Each signature is associated with one time period, and
the validity of a time period needs to be verified during
signature verification. As a result, an adversary cannot forge
any signature of any time period prior to the time when they
obtained the signing key (for example, via cracking the host of
the signer).

Traditional undetachable signature techniques (for example,
[13]–[18]) mainly focus on protecting the signing key from
being compromised, as well as preventing the misuse of the
signature function/algorithm on malicious shop servers. On the
other hand, normal forward-secure signature schemes do not
fulfill the undetachable property, which is required to sign a
contract securely by using a mobile agent on remote and
potentially malicious hosts.

To fix this gap, we introduce the idea of a forward-secure
undetachable digital signature (FS-UDS). The definition and
security notion of an FS-UDS are given. Then, the construction
of a concrete FS-UDS is proposed. The proposed FS-UDS
enables mobile agents to generate undetachable digital
signatures with forward security of the original signer’s signing
key. The main novelties of the scheme are as follows:
■ It takes into account both the security of the customer’s host

and the security of shop servers.
■ It is the first undetachable digital signature scheme that

supports forward-secure key evolvement. Although there are
many published forward-secure signature schemes, it is not a
trivial work to design a scheme that fulfills the undetachable
property given by equation (1).

■ It is carefully designed such that the security of the scheme
can be reduced to that of solving a hard mathematical
problem (that is, the computational co-Diffie–Hellman
problem on a co-GDH group pair).
To introduce the concrete scheme, we first give the formal

definition and security notions of undetachable signature
schemes in the next section. These are also contributions to
theoretical aspects of mobile agent security.

III. Definition and Security Notions

1. Definition

In this section, the definition of an FS-UDS is proposed.
Furthermore, the security notions of FS-UDS are given.
Before the definition, we first list frequently used symbols in
Table 1.
Definition 1. An FS-UDS FSUSig = (KGen, KUpd, Sign, Vrfy,
UndSigFunGen, UndSig, UndVrfy) consists of the following
seven algorithms:
■ The key generation algorithm, KGen, takes as input a security

parameter, 1k, where ;k  the total number of periods T

over which the scheme will operate; and possibly other

parameters to return a base public key, U0, and corresponding

base secret key (signing key), s0. The algorithm is

probabilistic.
■ The secret key update algorithm, KUpd, takes as input the

secret signing key of the previous period, sj–1, to return the
secret signing key of the current period, sj. The algorithm is
usually deterministic.

■ The undetachable signing function generation algorithm,
UndSigFunGen, is a probabilistic polynomial-time algorithm,
which takes the requirement of a customer, REQ_C; the
customer’s identity, IDC; and the customer’s public key and
private key of the current period as inputs. The algorithm
outputs a pair of functions, ()f  and Signed ().

j
f 

■ The undetachable signing algorithm, FSUndSig, is a

polynomial-time algorithm, which takes the contract (or a

relative hash value) as input. The algorithm outputs an

undetachable digital signature , .jz j  
■ The undetachable signature verification algorithm, UndVrfy,

is a polynomial-time algorithm, which takes the contract and

an undetachable signature z as input. The algorithm outputs

either “Accept” or “Reject,” simply “1” or “0.”
■ The signing algorithm, Sign, takes the secret signing key of

the current period, sj, and a message, M, to return a signature

of M for period j. We write this as ().
jj sSign M  The

algorithm might be probabilistic. The signature is always a

pair consisting of the value j of the current period and a tag

.
■ The verification algorithm, Vrfy, takes the public key (PK),

message (M), and candidate signature  ,j  to return a

bit, with “1” meaning accept and “0” meaning reject. We

write this as  
0

, ,Ub Vrfy M j  .

2. Security Notions

For the formalization of the security definition, we set up

576 Yang Shi et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0657

Table 1. Frequently used symbols.

Symbol Description

1k Security parameter, k 

U0 Base public key

s0 Base secret key (signing key)

j Index of the time period

sj / sj–1 Secret signing key of the time period j / j – 1

CERTj Certification (of underlying public key) of the period j

REQ_C||IDC Customer C’s requirement and identity

Signed j
f

Implementation of undetachable signing function of time
period j

f Auxiliary function of Signed j
f

Msg Message (usually a contract)

Z Undetachable signature

, j  Normal signatures

a fixed key-evolving undetachable signature scheme FSUSig =

(KGen, KUpd, Sign, Vrfy, UndSigFunGen, UndSig, UndVrfy).

An adversary, F, is viewed as functioning in three stages — the

chosen message attack and chosen restriction attack phase; the

break-in phase (breakin); and the forgery phase (forge). Its

success probability in breaking the forward-security of the

undetachable signature scheme is evaluated by the following

two experiments. Note that we write 1k, … , T as the arguments

to the key generation algorithm to indicate the possible

presence of extra arguments.

    
    

   
0

$
0 0

1

(), ()

0

Experiment FU-ForgeSig(, ,1 , ... ,)

(,) (1 , ... ,); 0

Repeat

1; ()

(,)

Until

If 1

, , ,

If

s sj j

k

k

j j

Sign UndSigFunGen

j

U

FSUndSig F T

U s KGen T j

j j s KUpd s

d F CMA CRA U

d breakin j T

d breakin j T j T

b M F forge s

Vrfy









 



  

 

  

    



    

   
, , 1 1

return 1

Else return 0

Sign UndSigFunGen
b b

b M b j

M L M L

    
 
     

In the experiment FU-ForgeSig, Sign
bL and UndSigFunGen

bL are

the query lists coming from the signing query ()
bsSign  of

period b and the undetachable signature function generation

query ()
bSKUndSigFunGen  of period b, respectively.

    
    

   

$
0 0

1

(), ()

0

Experiment FU-ForgeUndSig(, ,1 , ... ,)

(,) (1 , ... ,); 0

Repeat

1; ()

(,)

Until

If 1

, , , ,

If

s sj j

k

k

j j

Sign UndSigFunGen

j

FSUndSig F T

U s KGen T j

j j s KUpd s

d F CMA CRA U

d breakin j T

d breakin j T j T

b RES M F forge s





 



  

 

  

    



    

   
0

, , , 1 1
return 1

Else return 0

U

Sign UndSigFunGen
b b

UndVrfy b RES M b j

RES T RES T

    
 
     

In the experiment FU-ForgeUndSig, Sign
bT and

UndSigFunGen
bT

are the query lists coming from the signing query ()
bSKSign 

of period b and the undetachable signature function

generation query ()
bSKUndSigFunGen  of period b,

respectively.
Remark 1. RES is a restriction. It is usually in the form of

REQ||IDC, where REQ is the requirement of a customer (C)
and IDC is the customer’s identity.
Definition 2. The insecurity function of FSUndSig is defined
as

  
  

1 2,

1

2

InSec(,1 , ... , ; , ,) Max

1 FU-ForgeSig , ,1 , ... ,
Pr .

1 FU-ForgeUndSig , ,1 , ... ,

k
s u

F F F

k

k

FSUndSig T q q

FSUndSig F T

FSUndSig F T






           

(3)

The maximum here is over all 1 2,F F F for which the

following are true: the execution time of the above two

experiments, plus the size of the code of F, is at most t; F

makes a total of at most qs queries to the signing oracles and

at most qu queries to the undetachable signature function

generation oracles across all the stages in all experiments.
Remark 2. The execution time is that of the entire experiment,
not just that of F. So, it includes, in particular, the time to
compute answers to oracle queries.

IV. Concrete Construction

1. Public Setting

The pubic setting  1 2 1 2ˆ, , (,), , , (), ()e q P H H      

consists of the following components and algorithms:

■
1 is a multiplicative cyclic group of prime order q, 2 is

also a multiplicative cyclic group of the same order.
■ G and P are fixed generators of 1 and 2 , respectively.

ETRI Journal, Volume 37, Number 3, June 2015 Yang Shi et al. 577
http://dx.doi.org/10.4218/etrij.15.0114.0657

■
1 2ˆ : Te     is a bilinear map.

■ * *
1 :{0,1} qH Z and

*
2 1:{0,1}H  are two specialized

hash maps.

Remark 3. We suppose that there exists an isomorphism

2 1:   with () .P G 

2. Mathematical Problems and Computational Assumptions

Definition 3. Decision co-Diffie–Hellman (co-DDH) problem

on 1 2(,) :  Given 2, aP P G and 1, bY Y G as input,

the solution of the problem is “yes” if a = b, otherwise it is

“no.” Note that when the solution is “yes,” we say that (P, Pa, Y,

Yb) is a co-Diffie–Hellman tuple (co-DHT).

Assumption 1. We suppose that ê can be effectively

computed, so the co-DDH problem on 1 2(,)  is easy to

solve.

Definition 4. Computational co-Diffie–Hellman (co-CDH)

problem on 1 2(,) :  Given 2 2 2, ag g  and 1h as

input, the solution of the problem is (to compute) 1.
ah 

Definition 5. We say that an algorithm (', ')t  -breaks co-

CDH on 1 2(,)  if the algorithm runs in time (that is,

within t') and successfully solves the co-CDH problem on

1 2(,)  with a probability of at least ε'.
Definition 6. Two groups, 1 2(,)  , are a (, ', ')t  gap

Diffie–Hellman group pair (co-GDH) if they satisfy the

following properties:
■ The group operation on both 1 and 2 and the map ψ

from 2 to 1 can be computed in at most time .
■ The co-DDH problem on 1 2(,)  can be solved in at

most time .
■ No algorithm (', ')t  breaks the co-CDH problem on

1 2(,)  .

Assumption 2. The two order-q groups 1 2(,)  in the

public setting are a (, ', ')t  -bilinear group pair; that is, they

satisfy the following properties:
■ The group operation on both 1 and 2 and the map ψ

from 2 to 1 can be computed in at most time .
■ A group T of order q and a bilinear map

1 2ˆ : Te     exist, and ê is computable in at most
time .

■ No algorithm (', ')t  -breaks the co-CDH problem on

1 2(,)  .
Because we can efficiently solve the co-DDH problem by
computing two bilinear maps, if two groups 1 2(,)  are a
(, ', ')t  -bilinear group pair, then they are also a (2 , ', ')t  -
co-GDH group pair.

Based on the above computational assumption, we propose a
concrete and effective FS-UDS. The short signature scheme in

[22] and the forward-secure signatures generation technique in
[23] are used as building blocks in the proposed scheme.

3. Algorithms

The proposed FS-UDS consists of seven algorithms; that is,
KGen, KUpd, UndSigFunGen, UndSig, UndVrfy, Sig, and Vrfy,
as follows:

Algorithm. KGen (1k)

 

 

0

0

$ *
0 0

$
1 1

0 2 0

0 0

;

For 1; ; do

() ();

, , , , , EndFor

, 1, ... , ; , 1, ... ,

,

j

s
q

s
j j j

s

j j j

j j

s Z U P

j j T j

s H s U P

CERT U j U H U j U

erase s j T store CERT j T

return U s



 



   





 

Algorithm. KUpd 1 0(, , ,)j js CERT j U

     
0 1 1

2 0 0

1

', ', ', ; ();

If , , , ,

js
j j j j j j

j j

j

j

U j U CERT s H s U P

e P e H U j U U return

erase s

return s





   

   

Algorithm. UndSigFunGen  _ || , ,C j jREQ C ID sk CERT

2

Signed

Signed

(_ ||);

, ' ; ,

() () , ,

(), ()

j

j

j

s
C

j j

x x
j

H H REQ C ID K H

CERT j

setup f x H f x CERT K j

return f f

   

 

 

 

 

Algorithm. UndSig (Msg)

1 Signed(); ()
j

h H Msg return f h

Algorithm. UndVrfy  0 , , , , _ || CU Z j Msg REQ C ID

    
 

     
       1

0

0 0

2 0 0

2

, ' , ; ', ', ',

If ' ' 0

If _ 0

If , ', ', ' , 0

If ', _ || , 0

1

j j j j

j j

H Msg

C j

CERT Z j Z U j U CERT

U U j j return

Msg does not satisfy REQ C return

e P e H U j U U return

e Z P e H REQ C ID U return

else return

  

  

 



 

 

Algorithm. (, ,)jSign s j Msg

 2' ; , ' ; ,js

j j

j

H Msg CERT j
return
    


  

578 Yang Shi et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0657

Algorithm.  0 , , ,Vrfy U j Msg

    
     
     

0

0 0

2 0 0

2

, ' ; ', ', ',

If ' ' 0

If , , ', ' , 0

If ', , 0

Else 1

j j j j

j j

j

CERT U j U CERT

U U j j return

e P e H U j U U return

e P e H Msg U return

return

 



  

  

 



 

 

4. Proof of Correctness

The following proposition shows that the proposed scheme
is a “correct” FS-UDS scheme.

Proposition 1. Let , () , ,j

j

s
s j jSig x CERT x j , for each

 1,2, ... ,j T , then the function pair Signed j
f and f

generated by UndSigFunGen satisfies (1).

Proof. For any  1,2, ... ,j T , we have

, ,()() () , () ,

, () , , , ().

j

j j

j

j

sx x
s j s j j

s x x
j j Signed

Sig f x Sig H CERT H j

CERT H j CERT K j f x

 
  



It is not difficult to validate the correctness of UndVrfy and Vrfy,
so we omit the proofs. ■

5. Experimental Performance Analysis

We have implemented the algorithms in Java. Java has been
used instead of C/C++ because many mobile agent platforms
are developed in Java. An open-source Java Pairing-Based
Cryptography Library (JPBC) [24] is used in our
implementation. The performance is tested on both a portable
PC and a server. The configurations of these platforms are
listed in Table 2.

The performance results of the proposed algorithms on the
platforms are listed in Table 3. The input and output sizes of the
algorithms are also provided. Moreover, results of another
undetectable digital signature scheme [16] without forward
security is appended at the end of the table for comparison.

According to Table 3, all the algorithms in both schemes
work fine on either a PC or a server. For algorithms that
are frequently used in both schemes (that is, Sign, Vrfy,
UndSigFunGen, UndSig, and UndVrfy), although the time
and space cost of the proposed algorithms are a little more than
the ones in [16], the largest difference is only 45 ms on time
cost and 387 bytes on space cost. Importantly, the sacrifice of
these small costs brings the forward-security. The new
forward-secure signature scheme is capable of protecting the
signing key in both the original signer’s host and the remote
servers. As for the KeyGen algorithm, it is only used once for

each user in the initialization stage. Therefore, it brings little
burden to the mobile agent system, even though the KeyGen
algorithm needs more time than the one in [16].

6. Theoretical Security Analysis

In this subsection, we prove the security of the proposed
scheme based on Assumption 2. The co-CDH problem is
computationally infeasible in many algebra structures, such as
Weil pairings; so, Assumption 2 is widely used in security
schemes. We use this assumption as a mathematical basis for
the proposed FS-UDS scheme.
Theorem 1. Suppose that Assumption 2 is true, then for the
proposed FS-UDS scheme, and for any ',t  the insecurity
function that is defined in (3) satisfies (4).

(1) (2) (1) (2)

InSec(,1 , ... , ; , ,)

(1) '.

k
s u

s s u u

FSUndSig T q q

e q q q q



     
 (3)

Proof. The first step of this proof is to adapt the forgery
experiments to the proposed concrete construction as follows:

Table 2. Configurations of testing platforms.

Platform CPU RAM OS JDK

PC 1.7 G 2Cores 4 GB Win7 7.0

Server 2.5 G 6Cores × 2 96 GB WinServ2008 7.0

Table 3. Results of performance tests.

Time (ms) Size (byte)
Algorithm

PC Server Input Output

KGen (T=10) 663 610 2 148

KUpd 66 65 534 20

Sign 46 44 149 514

Vrfy 101 101 771 1

UndSigFunGen 46 43 535 642

UndSig 15 13 128 514

Ours

UndVrfy 115 114 901 1

KGen 17 15 2 148

Sign 52 50 148 128

Vrfy 57 56 384 1

UndSigFunGen 56 51 150 256

UndSig 16 15 128 128

[16]

UndVrfy 76 72 514 1

ETRI Journal, Volume 37, Number 3, June 2015 Yang Shi et al. 579
http://dx.doi.org/10.4218/etrij.15.0114.0657

 

 

   

    

1

0 0

1

.

1 0.

Game FU-ForgeSig [1 , ,], ,

, (1 , ,); 0

Repeat

1; ();

,
,

Until

s j

s j

k

k

j j

FSUndSig Sign

FSUndSig UndSigFunGen

FSUndSig r T F

U s KGen r T j

j j s KUpd s

O
d F CMA CRA U

O

d breakin j T







 

  

 
  
  

  

    
   1

If 1

, , , j

d breakin j T j T

b M F forge s

    



  
     

0. , , , 1
If return 1

1

Else return 0

Sign UndSigFunGen
b b

FSUndSig Vrfy U b M

b j M L M L

 
 
        

 
 

2

0 0

Game FU-ForgeUndSig 1 , , ,

, 1 , , ; 0

Repeat

k

k

FSUndSig r T F

U s KGen r T j

  

 

 

   

1

.

1 0.

1; ();

,
,

s j

s j

j j

FSUndSig Sign

FSUndSig UndSigFunGen

j j s KUpd s

O
d F CMA CRA U

O







  

 
  

  

Fig. 3. C1 plays between F1 and A.

1

2

FU-ForgeSig F-ForgeSign

1 1

.

.

.

.

:

()

()

(')

('')

FSUndSig H

queriesFSUndSig H

answers
FSUndSig UndSigFunGen

FSUndSig Sig

F C A

query

O

O

O M

O M




 

1 1

2 2

. .

. .

.
11

. .

:

() ()

() ()

(') . (')

('') ('')

FSUndSig H FSSig H

queriesFSUndSig H FSSig H

answers
FSUndSig UndSigFunGen

FSUndSig Sig FSSig Sig

play

O O answer

O O queries

from CO M C ZB M

O M O M

  
   




 

   
 

   

1

1

, ,

, , ,

, ,

, ,

j js s

j

j

b M

Transmit s to F

b M F forge s

Output b M

Output b M







 

   





Fig. 4. C2 plays between F2 and A.

1

2

FU-ForgeUndSig F-ForgeSign

2 2

.

.

.

.

:

()

()

(')

('')

FSUndSig H

queriesFSUndSig H

FSUndSig UndSigFunGen

FSUndSig Sig

F C A

query

O

O

O M

O M





 

1 1

2 2

. .

. .

.
22

. .

:

() ()

() ()

(') . (')

('') ('')

FSUndSig H FSSig H

queriesFSUndSig H FSSig H

answers answers
FSUndSig UndSigFunGen

FSUndSig Sig FSSig Sig

play

O O answer

O O queries

from CO M C ZB M

O M O M

  
    






   
 

     
 

2

2

2, , ,

, , , ,

, , ,

, , . , , ,

, ,

j js s

j

j

b REQ M

Transmit s to F

b RES M F forge s

Output b RES M

b RES C NB b RES M

Output b RES







 



  

   



 

580 Yang Shi et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0657

    
    

   2

Until

If 1

, , , , j

d breakin j T

d breakin j T j T

b RES M F forge s

  

    



    

   
0 , , , , 1 1

If return 1

Else return 0

Sign UndSigFunGen
b b

UndVrfy U b RES M b j

RES T RES T

    
 
     

The second step proceeds with the help of some intermediate
players and transitivity security games. An intermediate player
C1 plays the game FU-ForgeSig with F1 as shown in the left
part of Fig. 3 and plays the game F-ForgeSig with another
intermediate player A as shown in the right part of Fig. 3.
Similarly, an intermediate C2 plays the game FU-ForgeUndSig
with F1 as shown in the left part of Fig. 4 and plays the game F-
ForgeSig with another intermediate player A as shown in the
right part of Fig. 4.

As shown in Figs. 3 and 4, the intermediate players C1 and
C2 have some algorithms that help them to play the games. The
descriptions of these algorithms are as follows:

Algorithm.  2. , , ,C NB b RES M

1, ' , ; ();H
jCERT j h O M  

 

1, ' ,

, ,

jCERT h j

return b RES

 



 

Algorithm. . (, ,) 1,2i j jC ZB RES sk CERT i 

2. .

Signed

Signed

(); ();

, ,

() () , ,

(), ()

FSSig H FSSig Sig

j

x x
j

H O RES O RES

CERT K j

setup f x H f x CERT K j

return f f

 



 

 

Moreover, the game F-ForgeSign is the normal security

game that is widely used in the research of forward-secure
signature schemes. F-ForgeSign proceeds as follows:

 

   
    

    
 

0 0

1

.
0

0

Game F-ForgeSign [1 , ,], / / 1, 2

, . (1 , ,); 0

Repeat

1; . ();

,

Until

If 1

, , (,)

If . , , ,

s j

k
i

k

j j

FSSig Sig
i

i j

FSSig r T C i

U s FSSig KGen r T j

j j s FSSig KUpd s

d C CMA UO

d breakin j T

d breakin j T j T

b M C forge s

FSSig Vrfy U b











 

  

   
  

    



       1 1 Sig
bM b j M V     

return 1

Else return 0

Similar to the second step, the third step involves the
intermediate player A playing the game F-ForgeSign with Ci
(i = 1 or 2) as shown in the left part of Fig. 5 and playing the
game CMA with another player S as shown in the right part of
Fig. 5. CMA is a standard message attack game, so we omit the
description of this game. As shown in Fig. 5, the intermediate
player A has some algorithms to help him play the games. The
descriptions of these algorithms are as follows:

Algorithm. . (,1)kA Init T

   

 

 

$ $

$ * []

[]
1

1, ... , ; 1, ... ,

; ;

For 0, ; do

[] ; []

EndFor

*

For 1, ; do

[] . _ (); []

SKeyList i
q

b

SKeyList i
i

t T b t

HashList SKeyList PKeyList

i i t i

SKeyList i Z PKeyList i P

U U

i t i T i

SKeyList i B ZB H s PKeyList i P

 





  

   





    

 

EndFor

,store all SKeyList PKeyList

Algorithm. . _ (,)A ZB S j Msg

.

[]
2

If (') ()

Else ()

Sign Sig

SKeyList j

b j return O Msg

return H Msg



Algorithm.  . _A ZB H x

 
 $ *

If , ,

; , ;q

y x y HashList return y

y Z HashList HashList x y return y

 

 

After these steps, we can immediately find that a successful

forgery of F can be reduced to a successful forgery of the BLS

signature. Finally, we estimate the cost and probability of a

successful forgery.
Suppose that Fi (i = 1 or 2) can win the game that queries

1. () ,FSUndSig HO 

2. (),FSUndSig HO  (,),IDSigO  
3 (),HO  and

2 ()HO  at most  
1
,i

Hq  
2
,i

Hq   ,i
uq and  i

sq times,

respectively, and has a running time of i and an

advantage i . That is, F1 is a
1 2

(1) (1) (1) (1)
1 1, , , , ,s uH Hq q q q  -forger

of FSUndSig.Sig or F2 is a
1 2

(2) (2) (2) (2)
2 2, , , , ,s uH Hq q q q  -forger

of FSUndSig.UndSig.
Let cexp be the time of computing an exponentiation in 1

or 2 , and let crng be the time of generating a random element

of *
qZ . We obtain the main result as follows, by calculating the

ETRI Journal, Volume 37, Number 3, June 2015 Yang Shi et al. 581
http://dx.doi.org/10.4218/etrij.15.0114.0657

Fig. 5. A plays between Ci and S.

1 1

2

'

F-ForgeSign CMA

. .

.

.

. ()

: :

() () . _ ()

()

(')j

i

queriesFSSig H FSSig H

answers
FSSig H FSSi

FSSig Sig

C A S

A Init

query play

O O A ZB H

O O

O M

   


 

   
 

 

2 2. .
1

.

, ,

() ()

(') . _ (', ')

, , ,

, ,

j

j

queries

answers
g H Sign H

FSSig Sig

s

j

j

b M

answer

queries

from BO

O M A ZB S j M

Transmit s to A

b M A forge s

Output b M








  


  

   



 (,)Output M

number of operations in the game:
For any , if

 
 

 

2 2

1 1

(1) (2) (1) (2)

exp (1) (2) (1) (2)

(1) (2)

2
'

3 2

2

u uH H

s s u u

rngH H

q q q q
t c

q q q q T

T q q c


    

         
     

,

then

(1) (2) (1) (2)

InSec(,1 , ... , ; , ,)

(1) '.

k
s u

s s u u

FSUndSig T q q

e q q q q



     

■

7. Experimental Security Analysis

Besides the theoretical proof of security, experimental
security analysis is provided to show that the security of the
proposed scheme relies on the difficulty in solving the co-CDH
problem. Actually, the analysis consists of two experiments.
We firstly perform an experiment to show that if an attacker
can break our scheme (that is, successfully forge an
undetachable signature that can pass the verification of the
undetachable signature verification algorithm UndVrfy), then
the attacker is also capable of breaking the BLS signature
scheme (that is, successfully forge a signature generated by the
BLS signing algorithm). Secondly, we perform an experiment

Fig. 6. Sketch of security experiments.

1st experiment 2nd experiment

Branch 1: forge a
certification of period j

Break proposed scheme

Branch 2: direct forgery

BLS
signature

Solve
co-CDH

Attacker

to show that a forgery of the BLS signature can support
someone else to solve the co-CDH problem. The sketch of

Fig. 7. Successful forgery of CERTj.

Fig. 8. Successful forgery of K.

experimental security analysis is illustrated in Fig. 6.

In practical applications, sufficiently large security
parameters should be used. In fact, in performance testing, we
also use sufficiently large security parameters. However, to
enable “an attacker” to successfully break the proposed scheme,
very small security parameters (toy parameters) are used in the
attacking experiments. Only in this way can the attacker break
the scheme by brute-force guessing with limited computational
capability.

The first experiment can be divided into two branches. One
branch is where the attacker has forged a certification of the
fake underlying public key of period j, then the attacker uses
the fake signing key to generate a “valid” undetachable digital

582 Yang Shi et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0657

signature. A screen capture of the output is shown in Fig. 7. It is
easy to verify that the value of “sig” in the blue rectangle is just
a BLS signature on the hash value of the message in the upper
rectangle. Another branch is where the attacker directly
generates an undetachable digital signature. The certification of
period j, CERTj, is “real and valid.” Thus, the attacker must
generate a “valid” K that is used inv, otherwise the verification
process would fail. Note that K is also a BLS signature on
REQ_C || IDC. A screen capture of the output is shown in Fig. 8.

According to the series of experiments, if an attacker is
capable of breaking the proposed scheme, then the co-CDH
problem could be solved. Hence, for sufficiently large security
parameters, the proposed scheme is secure.

V. Comparison with Relative Works

The first implementation of an undetachable signature is the

RSA-based version presented by Kotzanikolaou and others

[13]. This was improved by Lee and others in [17] and by Shi

and others in [15]. Han and others proposed a security scheme

for e-Transactions using mobile agents with an agent broker

[14]. They gave an undetachable signature function pair but did

not present the signing function Sig subject to (1). Another

undetachable signature scheme from pairings was proposed by

Shi and others in [16], which is also based on the short

signature scheme proposed in [22]. However, this proposed

scheme provides forward security, which is not provided by the

scheme in [16]. The latest published undetachable signature

scheme was presented in 2013. The scheme [18] uses a

cryptosystem based on conic curves and is in the form of a

threshold digital signature.
As shown in Table 4, different schemes are based on

different problems; however, most significantly, only the
proposed scheme is forward-secure.

Table 4. Comparison of proposed scheme with other undetachable
signature schemes.

Scheme Computational infeasible problem Forward-secure

[13] Factorization of big integer No

[17] Factorization of big integer No

[14] q-Strong Diffie-Hellman problem No

[15] Discrete logarithm on elliptic curves No

[16] co-CDH No

[18]
Factorization of big integer and discrete

logarithm on conic curves
No

Ours co-CDH Yes

VI. Conclusion

In this paper, we proposed the idea of a forward-secure
undetachable digital signature (FS-UDS) so that mobile agents
can perform forward-secure signing operations on behalf of the
original signers securely, even while they are running in a
malicious host. We gave the formal definition of an FS-UDS
scheme. Then, we provided the security notion of forward-
secure undetachable signature schemes as a theoretical basis. A
concrete scheme with provable security was proposed for
protecting mobile agents in electronic commerce. The
proposed scheme is constructed on co-GDH group pairs, and
its security relies on the infeasibility in solving computational
co-Diffie–Hellman problems.

An implementation of the proposed undetachable signature
algorithm can securely migrate with mobile agents from one
host to another without the signing algorithm being at risk from
misuse or the signing key being compromised. Moreover, even
though a customer’s signing key (in a given time period) has
been compromised, any adversary cannot forge any contracts
that were signed before the compromising because this scheme
is forward-secure.

References

[1] D. Milojicic et al., “MASIF: The OMG Mobile Agent System

Interoperability Facility,” Personal Technol., vol. 2, no. 2, Feb. 1998,

pp. 117–129.

[2] S.H. von Solms, “Electronic Commerce with Secure Intelligent Trade

Agents,” Comput. Security, vol. 17, no. 5, May 1998, pp. 435–446.

[3] Y.-F. Chung et al., “An Agent-Based English Auction Protocol Using

Elliptic Curve Cryptosystem for Mobile Commerce,” Expert Syst.

Appl., vol. 38, no. 8, Aug. 2011, pp. 9900–9907.

[4] A.J.C. Trappey, C.V. Trappey, and F.T.L. Lin, “Automated Silicon

Intellectual Property Trade Using Mobile Agent Technology,” Robot.

Comput.-Integr. Manuf., vol. 22, no. 3, July 2006, pp. 189–202.

[5] G. Wang, T.N. Wong, and X.H. Wang, “A Hybrid Multi-agent

Negotiation Protocol Supporting Agent Mobility in Virtual

Enterprises,” Inf. Sci., vol. 282, no. 20, Oct. 2014, pp. 1–14.

[6] T.C. Du, E.Y. Li, and E. Wei, “Mobile Agents for a Brokering Service

in the Electronic Marketplace,” Decision Support Syst., vol. 39, no. 3,

May 2005, pp. 371–383.

[7] A. Aloui, O. Zerdoumi, and O. Kazar, “Architecture for Mobile

Business Based on Mobile Agent,” Multimedia Comput. Syst.,

Tangier, Morocco, May 10–12, 2012, pp. 954–958.

[8] T.N. Wong and F. Fang, “A Multi-agent Protocol for Multilateral

Negotiations in Supply Chain Management,” Int. J. Production Res.,

vol. 48, no. 1, Jan. 2010, pp. 271–299.

[9] S. Knight, S. Buffett, and P.C.K. Hung, “The International Journal of

Information Security Special Issue on Privacy, Security and Trust

ETRI Journal, Volume 37, Number 3, June 2015 Yang Shi et al. 583
http://dx.doi.org/10.4218/etrij.15.0114.0657

Technologies and E-Business Services - Guest Editors’ Introduction,”

Int. J. Inf. Security, vol. 6, no. 5, Sept. 2007, pp. 285–286.

[10] Y. Jung et al., “A Survey of Security Issue in Multi-agent Systems,”

Artif. Intell. Rev., vol. 37, no. 3, Mar. 2012, pp. 239–260.

[11] F. Hohl, “Time Limited Blackbox Security: Protecting Mobile

Agents from Malicious Hosts,” in Mobile Agents Security, Berlin,

Germany: Springer, 1998, pp. 92–113.

[12] T. Sander and C. Tschudin, “Protecting Mobile Agents against

Malicious Hosts,” in Mobile Agents Security, Berlin, Germany:

Springer, 1998, pp. 44–60.

[13] P. Kotzanikolaou, M. Burmester, and V. Chrissikopoulos, “Secure

Transactions with Mobile Agents in Hostile Environments,” in

Information Security Privacy, Berlin, Germany: Springer, 2000, pp.

289–297.

[14] S. Han, E. Chang, and T. Dillon, “Secure E-Transactions Using

Mobile Agents with Agent Broker,” Int. Conf. Services Syst. Services

Manag., Chongqing, China, June 13–15, 2005, pp. 849–855.

[15] Y. Shi, L. Cao, and X. Wang, “A Security Scheme of Electronic

Commerce for Mobile Agents Uses Undetachable Digital

Signatures,” Int. Conf. Inf. Security, Shanghai, China, Nov. 14–15,

2004, pp. 242–243.

[16] Y. Shi et al., “Secure Mobile Agents in Electronic Commerce by

Using Undetachable Signatures from Pairings,” Int. Conf. Electron.

Business, Beijing, China, Dec. 5–9, 2004, pp. 1038–1043.

[17] B. Lee, H. Kim, and K. Kim, “Secure Mobile Agent Using Strong

Non-designated Proxy Signature,” in Information Security Privacy,

Berlin, Germany: Springer, 2001, pp. 474–486.

[18] Y. Shi and G.Y. Xiong, “An Undetachable Threshold Digital

Signature Scheme Based on Conic Curves,” Appl. Math. Inf. Sci., vol.

7, no. 2, Mar. 2013, pp. 823–828.

[19] J. Yu et al., “Forward-Secure Identity-Based Signature: Security

Notions and Construction,” Inf. Sci., vol. 181, no. 3, Feb. 2011, pp.

648–660.

[20] Y.-C. Yu, T.-Y. Huang, and T.-W. Hou, “Forward Secure Digital

Signature for Electronic Medical Records,” J. Med. Syst., vol. 36, no.

2, Apr. 2012, pp. 399–406.

[21] C.-I. Fan, Y.-H. Lin, and R.-H. Hsu, “Complete EAP Method: User

Efficient and Forward Secure Authentication Protocol for IEEE

802.11 Wireless LANs,” IEEE Trans. Parallel Distrib. Syst., vol. 24,

no. 4, Apr. 2013, pp. 672–680.

[22] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the

Weil Pairing,” J. Cryptology, vol. 17, no. 4, Sept. 2004, pp. 297–319.

[23] H. Krawczyk, “Simple Forward-Secure Signatures from Any

Signature Scheme,” ACM Conf. Comput. Commun. Security, Athens,

Greece, Nov. 1–4, 2000, pp. 108–115.

[24] A. De Caro and V. Iovino, “JPBC: Java Pairing Based

Cryptography,” IEEE Symp. Comput. Commun., Kerkyra, Greece,

June 28–July 1, 2011, pp. 850–855.

Yang Shi received his BS degree in electronic

engineering from Hefei University of

Technology, China, in 1999 and his MS degree

in pattern recognition and intelligence systems

from Kunming University of Science and

Technology, China, in 2002. He obtained his

PhD degree in pattern recognition and

intelligent systems from Tongji University, Shanghai, China, in 2005.

From 2005 to 2011, he worked for Pudong CS&S Co. Ltd., Shanghai,

China. Since 2012, he has been an associate professor with the School

of Software Engineering, Tongji University, His research interests

include information security, software privacy, and data engineering.

Qinpei Zhao received her BS degree in

automation technology from Xi’dian University,

China, in 2004. She received her MS degree in

pattern recognition and image processing from

Shanghai Jiaotong University, China, in 2007.

She obtained her PhD degree in computer

science from the School of Computing,

University of Eastern Finland, Joensuu, Finland, in 2012. Since 2013,

she has been a lecturer at the School of Software Engineering, Tongji

University, Shanghai, China. Her current research interests include

clustering algorithms and multimedia processing; location-based

services; and security.

Qin Liu received her BS degree in industrial

automation from Dalian University of

Technology and Science, China, in 1998; her

MS degree in software engineering from

Southampton Solent University, UK, in 2001;

and her PhD degree in software engineering

from Northumbria University, Newcastle, UK,

in 2006. Since 2007, she has been with the School of Software

Engineering, Tongji University, Shanghai, China. Currently, she is

both a professor and the executive dean of the School of Software

Engineering, Tongji University. Her research interests include software

measurement; information security and privacy; data mining; and data

analysis.

