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We introduce the idea of a forward-secure undetachable 
digital signature (FS-UDS) in this paper, which enables 
mobile agents to generate undetachable digital signatures 
with forward security of the original signer’s signing key. 
The definition and security notion of an FS-UDS scheme 
are given. Then, the construction of a concrete FS-UDS 
scheme is proposed; and the proof of security for the 
proposed scheme is also provided. In the proposed scheme, 
mobile agents need not carry the signing key when they 
generate digital signatures on behalf of the original signer, 
so the signing key will not be compromised. At the same 
time, the encrypted function is combined with the original 
signer’s requirement; therefore, misuse of the signing 
algorithm can be prevented. Furthermore, in the case 
where a hacker has accessed the signing key of the original 
signer, he/she is not able to forge a signature for any time 
period prior to when the key was obtained. 
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I. Introduction 

With the fast development of distributed computing 
technologies, mobile agent systems and related technologies 
have attracted great interest. A mobile agent system consists 
primarily of mobile agents and platforms. An agent is a type of 
computer software that acts autonomously on behalf of a 
person or an organization [1].  

Platforms that can create, execute, interpret, transfer, and 
terminate agents are agent systems. Mobile agents have a high 
mobility to transport themselves from one platform in a 
network to another and can automatically suspend execution 
on one platform and migrate to another to resume their 
computations. The ability to travel enables a mobile agent to 
move to a destination agent system that contains an entity in 
which the agent wants to interact.  

The advent of electronic commerce practices has increased 
the demand for interoperable applications that allow for the 
flexible exchange of data across enterprise borders, different 
IT-platforms, and different information systems. For example, 
an intelligent trade agent (ITA) that roams a network [2] buying 
and selling goods through three different merchant’s hosts 
within a network is shown in Fig. 1. Moreover, many mobile 
agent–based technologies have been developed and put into 
practice, such as those in [3]–[8].  

The aforementioned applications cannot be realized securely 
without suitable security technologies. However, the fact is that 
mobile agents are exposed to serious security threats; for 
example, malicious hosts might endanger passing mobile 
agents. As security threats have become a bottleneck in the 
development and maintenance of mobile agent–based 
applications [9], there has become an urgent calling for 
efficient and practical security solutions that can achieve a good  
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Fig. 1. ITA roams network buying and selling goods. 
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balance between security and mobility in mobile agent–related 
studies. 

Security problems of mobile agent systems stemming from 
the mobility of mobile agents can be categorized into the 
following two subjects [10]: agent-side security and platform-
side security. This study focuses on agent-side security and 
aims to provide a practical security solution under mobility. 
Furthermore, the study addresses the worst situation of agent-
side threats when the agents run in an untrusting environment 
or, more specifically, the agents are subject to attacks from 
malicious platforms. Because mobile agents frequently migrate 
among various hosts (platforms1)) due to their mobility, they 
run the risk of exposing themselves to untrusting environments 
more often than static agents. In such environments, the 
proposed forward-secure undetachable digital signature 
technique can provide the integrity and validity of business 
contracts, as well as safeguarding the confidentiality of the 
user’s private signing key.  

II. Mobile Agent Security and Undetachable Digital 
Signatures 

The protection of a mobile agent from possible attacks by 
malicious hosts is referred to as the problem of malicious hosts. 
Hohl [11] identified a considerable number of such attacks 
including spying out code, data, and control flow; manipulation 
of code, data, and control flow and so on. Thus, threats from 
potentially malicious hosts have become a great obstacle to the 
widespread deployment of mobile agent technology–based 
applications in electronic commerce.  

In traditional digital signature schemes, mobile agents need 
to carry the implementation of the signing algorithm with the 
private key to generate signatures on behalf of the original user,  
                                                               

1) In the study, host and platform are used interchangeably to refer a place where mobile 

agents operate. 
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so an adversary can misuse the signing algorithm or even 
extract the private signing key from the agent. For example, an 
attacker who has control of a malicious host can find the 
signing key from Java byte code, as illustrated in Fig. 2 (that is, 
a screen snapshot of a Hex file editor). 

Hence, Sander and Tschudin proposed the idea of 
undetachable digital signatures [12], which allows a mobile 
agent to effectively produce a digital signature inside a remote 
and possibly malicious host without the host being able to 
deduce the agent’s secret (for example, the signing key) or 
reuse the implementation of the signing algorithm for arbitrary 
documents.  

The general mathematical description of an undetachable 
signature function is as follows. Suppose that Sig is the signing 
algorithm used by C (a customer) to produce the digital 
signature z = Sig(m) for an arbitrary message m. The 
undetachable signing algorithm fSigned should subject to (1), 
where f is an auxiliary binding function. 

Signed Sig .f f                   (1) 

To create an undetachable signature on a shop’s server, (2) is 
computed by calling fSigned from the customer’s mobile agent. 

Signed ( ).z f m                  (2) 

Although the signature function Sig is not known by others, 
everyone can verify the validity of message m by using a 
specialized verification algorithm. 

Since the first concrete construction of an undetachable 
digital signature based on RSA [13] was published in 2001, a 
variety of undetachable signature schemes have been proposed 
[13]–[17]. The latest one to date, [18], is a threshold version 
using conic curves, which was proposed in 2013. 

At the same time, digital signature schemes also face a 
significant key leakage problem on the original signer’s local 
host, while undetachable signatures only protect the signing 
key from leakage on potentially malicious remote hosts. In the 
event that the customer’s host is infiltrated by an attacker, there 
would be a serious security problem because the original 
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private signing key would be compromised. 
The possibility of the occurrence of this security problem 

increases with the fast development of advanced persistent 
threats (APTs), such as “Operation Aurora” and “Stuxnet 
Worm.”  

Intuitively, a forward-secure signature technique could be 
used to control this risk. The principles behind forward-secure 
signature schemes are discussed briefly in [19]–[21]. In these 
schemes, the whole lifetime of a cryptosystem is divided into a 
number of time periods. At the end of each time period, the 
user computes a new signing key for the next time period using 
a one-way function and the old key is then erased. In this way, 
the user’s singing key changes for different time periods, but 
the public key (verification key) is fixed during the whole 
lifetime. Each signature is associated with one time period, and 
the validity of a time period needs to be verified during 
signature verification. As a result, an adversary cannot forge 
any signature of any time period prior to the time when they 
obtained the signing key (for example, via cracking the host of 
the signer). 

Traditional undetachable signature techniques (for example, 
[13]–[18]) mainly focus on protecting the signing key from 
being compromised, as well as preventing the misuse of the 
signature function/algorithm on malicious shop servers. On the 
other hand, normal forward-secure signature schemes do not 
fulfill the undetachable property, which is required to sign a 
contract securely by using a mobile agent on remote and 
potentially malicious hosts.  

To fix this gap, we introduce the idea of a forward-secure 
undetachable digital signature (FS-UDS). The definition and 
security notion of an FS-UDS are given. Then, the construction 
of a concrete FS-UDS is proposed. The proposed FS-UDS 
enables mobile agents to generate undetachable digital 
signatures with forward security of the original signer’s signing 
key. The main novelties of the scheme are as follows: 
■ It takes into account both the security of the customer’s host 

and the security of shop servers. 
■ It is the first undetachable digital signature scheme that 

supports forward-secure key evolvement. Although there are 
many published forward-secure signature schemes, it is not a 
trivial work to design a scheme that fulfills the undetachable 
property given by equation (1). 

■ It is carefully designed such that the security of the scheme 
can be reduced to that of solving a hard mathematical 
problem (that is, the computational co-Diffie–Hellman 
problem on a co-GDH group pair). 
To introduce the concrete scheme, we first give the formal 

definition and security notions of undetachable signature 
schemes in the next section. These are also contributions to 
theoretical aspects of mobile agent security. 

III. Definition and Security Notions 

1. Definition 

In this section, the definition of an FS-UDS is proposed. 
Furthermore, the security notions of FS-UDS are given.  
Before the definition, we first list frequently used symbols in 
Table 1. 
Definition 1. An FS-UDS FSUSig = (KGen, KUpd, Sign, Vrfy, 
UndSigFunGen, UndSig, UndVrfy) consists of the following 
seven algorithms: 
■ The key generation algorithm, KGen, takes as input a security 

parameter, 1k, where ;k   the total number of periods T 

over which the scheme will operate; and possibly other 

parameters to return a base public key, U0, and corresponding 

base secret key (signing key), s0. The algorithm is 

probabilistic. 
■ The secret key update algorithm, KUpd, takes as input the 

secret signing key of the previous period, sj–1, to return the 
secret signing key of the current period, sj. The algorithm is 
usually deterministic. 

■ The undetachable signing function generation algorithm, 
UndSigFunGen, is a probabilistic polynomial-time algorithm, 
which takes the requirement of a customer, REQ_C; the 
customer’s identity, IDC; and the customer’s public key and 
private key of the current period as inputs. The algorithm 
outputs a pair of functions, ( )f   and Signed ( ).

j
f   

■ The undetachable signing algorithm, FSUndSig, is a 

polynomial-time algorithm, which takes the contract (or a 

relative hash value) as input. The algorithm outputs an 

undetachable digital signature , .jz j    
■ The undetachable signature verification algorithm, UndVrfy, 

is a polynomial-time algorithm, which takes the contract and 

an undetachable signature z as input. The algorithm outputs 

either “Accept” or “Reject,” simply “1” or “0.” 
■ The signing algorithm, Sign, takes the secret signing key of 

the current period, sj, and a message, M, to return a signature 

of M for period j. We write this as ( ).
jj sSign M   The 

algorithm might be probabilistic. The signature is always a 

pair consisting of the value j of the current period and a tag 

.  
■ The verification algorithm, Vrfy, takes the public key (PK), 

message (M), and candidate signature  ,j   to return a 

bit, with “1” meaning accept and “0” meaning reject. We 

write this as  
0

, ,Ub Vrfy M j  . 

2. Security Notions 

For the formalization of the security definition, we set up 
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Table 1. Frequently used symbols. 

Symbol Description 

1k Security parameter, k   

U0 Base public key  

s0 Base secret key (signing key) 

j Index of the time period 

sj / sj–1 Secret signing key of the time period j / j – 1 

CERTj Certification (of underlying public key) of the period j  

REQ_C||IDC Customer C’s requirement and identity 

Signed j
f  

Implementation of undetachable signing function of time 
period j 

f Auxiliary function of Signed j
f  

Msg Message (usually a contract) 

Z Undetachable signature 

, j    Normal signatures 

 

 

a fixed key-evolving undetachable signature scheme FSUSig = 

(KGen, KUpd, Sign, Vrfy, UndSigFunGen, UndSig, UndVrfy). 

An adversary, F, is viewed as functioning in three stages — the 

chosen message attack and chosen restriction attack phase; the 

break-in phase (breakin); and the forgery phase (forge). Its 

success probability in breaking the forward-security of the 

undetachable signature scheme is evaluated by the following 

two experiments. Note that we write 1k, … , T as the arguments 

to the key generation algorithm to indicate the possible 

presence of extra arguments. 
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In the experiment FU-ForgeSig, Sign
bL and UndSigFunGen

bL  are 

the query lists coming from the signing query ( )
bsSign   of 

period b and the undetachable signature function generation 

query ( )
bSKUndSigFunGen   of period b, respectively. 
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In the experiment FU-ForgeUndSig, Sign
bT  and 

UndSigFunGen
bT  

are the query lists coming from the signing query ( )
bSKSign    

of period b and the undetachable signature function  

generation query ( )
bSKUndSigFunGen  of period b, 

respectively. 
Remark 1. RES is a restriction. It is usually in the form of  

REQ||IDC, where REQ is the requirement of a customer (C) 
and IDC is the customer’s identity. 
Definition 2. The insecurity function of FSUndSig is defined 
as 

  
  

1 2,

1

2

InSec( ,1 , ... , ; , , ) Max

1 FU-ForgeSig , ,1 , ... ,
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1 FU-ForgeUndSig , ,1 , ... ,
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s u
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(3) 

The maximum here is over all 1 2,F F F  for which the 

following are true: the execution time of the above two 

experiments, plus the size of the code of F, is at most t; F 

makes a total of at most qs queries to the signing oracles and  

at most qu queries to the undetachable signature function 

generation oracles across all the stages in all experiments. 
Remark 2. The execution time is that of the entire experiment, 
not just that of F. So, it includes, in particular, the time to 
compute answers to oracle queries. 

IV. Concrete Construction 

1. Public Setting 

The pubic setting  1 2 1 2ˆ, , ( , ), , , ( ), ( )e q P H H        

consists of the following components and algorithms:  

■
1  is a multiplicative cyclic group of prime order q, 2  is 

also a multiplicative cyclic group of the same order. 
■ G and P are fixed generators of 1  and 2 , respectively. 
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■
1 2ˆ : Te      is a bilinear map. 

■ * *
1 :{0,1} qH Z  and 

*
2 1:{0,1}H   are two specialized 

hash maps. 

Remark 3. We suppose that there exists an isomorphism 

2 1:    with ( ) .P G   

2. Mathematical Problems and Computational Assumptions 

Definition 3. Decision co-Diffie–Hellman (co-DDH) problem 

on 1 2( , ) :   Given 2, aP P G  and 1, bY Y G  as input, 

the solution of the problem is “yes” if a = b, otherwise it is 

“no.” Note that when the solution is “yes,” we say that (P, Pa, Y, 

Yb) is a co-Diffie–Hellman tuple (co-DHT).  

Assumption 1. We suppose that ê  can be effectively 

computed, so the co-DDH problem on 1 2( , )   is easy to 

solve. 

Definition 4. Computational co-Diffie–Hellman (co-CDH) 

problem on 1 2( , ) :  Given 2 2 2,  ag g   and 1h  as 

input, the solution of the problem is (to compute) 1.
ah   

Definition 5. We say that an algorithm ( ', ')t  -breaks co-

CDH on 1 2( , )   if the algorithm runs in time (that is, 

within t') and successfully solves the co-CDH problem on 

1 2( , )   with a probability of at least ε'. 
Definition 6. Two groups, 1 2( , )  , are a ( , ', ')t   gap 

Diffie–Hellman group pair (co-GDH) if they satisfy the 

following properties: 
■ The group operation on both 1  and 2  and the map ψ 

from 2  to 1  can be computed in at most time . 
■ The co-DDH problem on 1 2( , )   can be solved in at 

most time . 
■ No algorithm ( ', ')t   breaks the co-CDH problem on 

1 2( , )  . 

Assumption 2. The two order-q groups 1 2( , )   in the 

public setting are a ( , ', ')t  -bilinear group pair; that is, they 

satisfy the following properties: 
■ The group operation on both 1  and 2  and the map ψ 

from 2  to 1  can be computed in at most time . 
■ A group T  of order q and a bilinear map 

1 2ˆ : Te      exist, and ê  is computable in at most 
time . 

■ No algorithm ( ', ')t  -breaks the co-CDH problem on 

1 2( , )  . 
Because we can efficiently solve the co-DDH problem by 
computing two bilinear maps, if two groups 1 2( , )   are a 
( , ', ')t  -bilinear group pair, then they are also a (2 , ', ')t  -
co-GDH group pair. 

Based on the above computational assumption, we propose a 
concrete and effective FS-UDS. The short signature scheme in 

[22] and the forward-secure signatures generation technique in 
[23] are used as building blocks in the proposed scheme. 

3. Algorithms 

The proposed FS-UDS consists of seven algorithms; that is, 
KGen, KUpd, UndSigFunGen, UndSig, UndVrfy, Sig, and Vrfy, 
as follows: 

Algorithm. KGen (1k)  

 

 
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Algorithm. UndSigFunGen  _ || , ,C j jREQ C ID sk CERT  
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Algorithm. UndSig (Msg) 

1 Signed( );   ( )
j

h H Msg return f h  

 
Algorithm. UndVrfy  0 , , , , _ || CU Z j Msg REQ C ID  
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Algorithm.  0 , , ,Vrfy U j Msg  

    
     
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4. Proof of Correctness 

The following proposition shows that the proposed scheme 
is a “correct” FS-UDS scheme. 

Proposition 1. Let , ( ) , ,j

j

s
s j jSig x CERT x j , for each 

 1,2, ... ,j T , then the function pair Signed j
f  and f 

generated by UndSigFunGen satisfies (1). 

Proof. For any  1,2, ... ,j T , we have 

, ,( )( ) ( ) , ( ) ,

, ( ) , , , ( ).

j

j j

j

j

sx x
s j s j j

s x x
j j Signed

Sig f x Sig H CERT H j

CERT H j CERT K j f x

 
  


 

It is not difficult to validate the correctness of UndVrfy and Vrfy, 
so we omit the proofs.                               ■ 

5. Experimental Performance Analysis 

We have implemented the algorithms in Java. Java has been 
used instead of C/C++ because many mobile agent platforms 
are developed in Java. An open-source Java Pairing-Based 
Cryptography Library (JPBC) [24] is used in our 
implementation. The performance is tested on both a portable 
PC and a server. The configurations of these platforms are 
listed in Table 2. 

The performance results of the proposed algorithms on the 
platforms are listed in Table 3. The input and output sizes of the 
algorithms are also provided. Moreover, results of another 
undetectable digital signature scheme [16] without forward 
security is appended at the end of the table for comparison. 

According to Table 3, all the algorithms in both schemes 
work fine on either a PC or a server. For algorithms that    
are frequently used in both schemes (that is, Sign, Vrfy, 
UndSigFunGen, UndSig, and UndVrfy), although the time  
and space cost of the proposed algorithms are a little more than 
the ones in [16], the largest difference is only 45 ms on time 
cost and 387 bytes on space cost. Importantly, the sacrifice of 
these small costs brings the forward-security. The new 
forward-secure signature scheme is capable of protecting the 
signing key in both the original signer’s host and the remote 
servers. As for the KeyGen algorithm, it is only used once for 

each user in the initialization stage. Therefore, it brings little 
burden to the mobile agent system, even though the KeyGen 
algorithm needs more time than the one in [16]. 

6. Theoretical Security Analysis 

In this subsection, we prove the security of the proposed 
scheme based on Assumption 2. The co-CDH problem is 
computationally infeasible in many algebra structures, such as 
Weil pairings; so, Assumption 2 is widely used in security 
schemes. We use this assumption as a mathematical basis for 
the proposed FS-UDS scheme.  
Theorem 1. Suppose that Assumption 2 is true, then for the 
proposed FS-UDS scheme, and for any ',t   the insecurity 
function that is defined in (3) satisfies (4). 

(1) (2) (1) (2)

InSec( ,1 , ... , ; , , )

( 1) '.

k
s u

s s u u

FSUndSig T q q

e q q q q



     
       (3) 

Proof. The first step of this proof is to adapt the forgery 
experiments to the proposed concrete construction as follows: 
 

Table 2. Configurations of testing platforms. 

Platform CPU RAM OS JDK 

PC 1.7 G 2Cores 4 GB Win7 7.0 

Server 2.5 G 6Cores × 2 96 GB WinServ2008 7.0 

 

Table 3. Results of performance tests. 

Time (ms) Size (byte) 
Algorithm 

PC Server Input Output 

KGen (T=10) 663 610 2 148 

KUpd 66 65 534 20 

Sign 46 44 149 514 

Vrfy 101 101 771 1 

UndSigFunGen 46 43 535 642 

UndSig 15 13 128 514 

Ours

UndVrfy 115 114 901 1 

KGen 17 15 2 148 

Sign 52 50 148 128 

Vrfy 57 56 384 1 

UndSigFunGen 56 51 150 256 

UndSig 16 15 128 128 

[16]

UndVrfy 76 72 514 1 
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Fig. 3. C1 plays between F1 and A. 
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Fig. 4. C2 plays between F2 and A. 
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The second step proceeds with the help of some intermediate 
players and transitivity security games. An intermediate player 
C1 plays the game FU-ForgeSig with F1 as shown in the left 
part of Fig. 3 and plays the game F-ForgeSig with another 
intermediate player A as shown in the right part of Fig. 3. 
Similarly, an intermediate C2 plays the game FU-ForgeUndSig 
with F1 as shown in the left part of Fig. 4 and plays the game F-
ForgeSig with another intermediate player A as shown in the 
right part of Fig. 4. 

As shown in Figs. 3 and 4, the intermediate players C1 and 
C2 have some algorithms that help them to play the games. The 
descriptions of these algorithms are as follows: 
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Moreover, the game F-ForgeSign is the normal security 

game that is widely used in the research of forward-secure 
signature schemes. F-ForgeSign proceeds as follows: 

 

   
    

    
 

0 0

1

.
0

0

Game F-ForgeSign [1 , , ], / / 1, 2

, . (1 , , ); 0

Repeat

1; . ( );

,

Until

If 1

, , ( , )

If . , , ,

s j

k
i

k

j j

FSSig Sig
i

i j

FSSig r T C i

U s FSSig KGen r T j

j j s FSSig KUpd s

d C CMA UO

d breakin j T

d breakin j T j T

b M C forge s

FSSig Vrfy U b











 

  

   
  

    



       1 1 Sig
bM b j M V     

return 1

Else return 0
 

Similar to the second step, the third step involves the 
intermediate player A playing the game F-ForgeSign with Ci  
(i = 1 or 2) as shown in the left part of Fig. 5 and playing the 
game CMA with another player S as shown in the right part of 
Fig. 5. CMA is a standard message attack game, so we omit the 
description of this game. As shown in Fig. 5, the intermediate 
player A has some algorithms to help him play the games. The 
descriptions of these algorithms are as follows: 
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After these steps, we can immediately find that a successful 

forgery of F can be reduced to a successful forgery of the BLS 

signature. Finally, we estimate the cost and probability of a 

successful forgery.  
Suppose that Fi (i = 1 or 2) can win the game that queries 

1. ( ) ,FSUndSig HO 
 

2. ( ),FSUndSig HO   ( , ),IDSigO    
3 ( ),HO   and 

2 ( )HO   at most  
1
,i

Hq   
2
,i

Hq    ,i
uq  and  i

sq  times, 

respectively, and has a running time of i  and an 

advantage i . That is, F1 is a 
1 2

(1) (1) (1) (1)
1 1, , , , ,s uH Hq q q q  -forger 

of FSUndSig.Sig or F2 is a 
1 2

(2) (2) (2) (2)
2 2, , , , ,s uH Hq q q q  -forger 

of FSUndSig.UndSig.  
Let cexp be the time of computing an exponentiation in 1  

or 2 , and let crng be the time of generating a random element 

of *
qZ . We obtain the main result as follows, by calculating the  
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Fig. 5. A plays between Ci and S. 
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7. Experimental Security Analysis 

Besides the theoretical proof of security, experimental 
security analysis is provided to show that the security of the 
proposed scheme relies on the difficulty in solving the co-CDH 
problem. Actually, the analysis consists of two experiments. 
We firstly perform an experiment to show that if an attacker 
can break our scheme (that is, successfully forge an 
undetachable signature that can pass the verification of the 
undetachable signature verification algorithm UndVrfy), then 
the attacker is also capable of breaking the BLS signature 
scheme (that is, successfully forge a signature generated by the 
BLS signing algorithm). Secondly, we perform an experiment 

  

 

Fig. 6. Sketch of security experiments. 

1st experiment 2nd experiment

Branch 1: forge a 
certification of period j 

Break proposed scheme 

Branch 2: direct forgery 

BLS 
signature 
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to show that a forgery of the BLS signature can support 
someone else to solve the co-CDH problem. The sketch of 
 

 

Fig. 7. Successful forgery of CERTj.  
 

 

Fig. 8. Successful forgery of K.  
 
experimental security analysis is illustrated in Fig. 6. 

In practical applications, sufficiently large security 
parameters should be used. In fact, in performance testing, we 
also use sufficiently large security parameters. However, to 
enable “an attacker” to successfully break the proposed scheme, 
very small security parameters (toy parameters) are used in the 
attacking experiments. Only in this way can the attacker break 
the scheme by brute-force guessing with limited computational 
capability.  

The first experiment can be divided into two branches. One 
branch is where the attacker has forged a certification of the 
fake underlying public key of period j, then the attacker uses 
the fake signing key to generate a “valid” undetachable digital 
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signature. A screen capture of the output is shown in Fig. 7. It is 
easy to verify that the value of “sig” in the blue rectangle is just 
a BLS signature on the hash value of the message in the upper 
rectangle. Another branch is where the attacker directly 
generates an undetachable digital signature. The certification of 
period j, CERTj, is “real and valid.” Thus, the attacker must 
generate a “valid” K that is used inv, otherwise the verification 
process would fail. Note that K is also a BLS signature on 
REQ_C || IDC. A screen capture of the output is shown in Fig. 8. 

According to the series of experiments, if an attacker is 
capable of breaking the proposed scheme, then the co-CDH 
problem could be solved. Hence, for sufficiently large security 
parameters, the proposed scheme is secure. 

V. Comparison with Relative Works 

The first implementation of an undetachable signature is the 

RSA-based version presented by Kotzanikolaou and others 

[13]. This was improved by Lee and others in [17] and by Shi 

and others in [15]. Han and others proposed a security scheme 

for e-Transactions using mobile agents with an agent broker 

[14]. They gave an undetachable signature function pair but did 

not present the signing function Sig subject to (1). Another 

undetachable signature scheme from pairings was proposed by 

Shi and others in [16], which is also based on the short 

signature scheme proposed in [22]. However, this proposed 

scheme provides forward security, which is not provided by the 

scheme in [16]. The latest published undetachable signature 

scheme was presented in 2013. The scheme [18] uses a 

cryptosystem based on conic curves and is in the form of a 

threshold digital signature. 
As shown in Table 4, different schemes are based on 

different problems; however, most significantly, only the 
proposed scheme is forward-secure. 
 

Table 4. Comparison of proposed scheme with other undetachable 
signature schemes. 

Scheme Computational infeasible problem Forward-secure

[13] Factorization of big integer No 

[17] Factorization of big integer No 

[14] q-Strong Diffie-Hellman problem No 

[15] Discrete logarithm on elliptic curves No 

[16] co-CDH No 

[18] 
Factorization of big integer and discrete 

logarithm on conic curves 
No 

Ours co-CDH Yes 

 

VI. Conclusion 

In this paper, we proposed the idea of a forward-secure 
undetachable digital signature (FS-UDS) so that mobile agents 
can perform forward-secure signing operations on behalf of the 
original signers securely, even while they are running in a 
malicious host. We gave the formal definition of an FS-UDS 
scheme. Then, we provided the security notion of forward-
secure undetachable signature schemes as a theoretical basis. A 
concrete scheme with provable security was proposed for 
protecting mobile agents in electronic commerce. The 
proposed scheme is constructed on co-GDH group pairs, and 
its security relies on the infeasibility in solving computational 
co-Diffie–Hellman problems.  

An implementation of the proposed undetachable signature 
algorithm can securely migrate with mobile agents from one 
host to another without the signing algorithm being at risk from 
misuse or the signing key being compromised. Moreover, even 
though a customer’s signing key (in a given time period) has 
been compromised, any adversary cannot forge any contracts 
that were signed before the compromising because this scheme 
is forward-secure.  
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