OpenCL을 이용한 JPEG2000 4K 초고화질 영상처리의 병렬고속화 구현

A Parallel Implementation of JPEG2000 4K Ultra High Definition Image using OpenCL

  • 투고 : 2015.01.04
  • 심사 : 2015.02.23
  • 발행 : 2015.03.31

초록

멀티미디어 기술의 급속한 발전과 사용자의 대형 화면에 대한 선호도가 높아지는 가운데 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리되던 픽셀 이미지를 넘어 초고화질 해상도 이미지(4K : $3,840{\times}2,160$ 또는 8K : $7680{\times}4320$)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대한 연구를 위하여, JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 GPU환경에서 병렬 컴퓨팅을 통해 처리속도를 향상시키는 방법을 제안한다. 병렬화한 알고리즘의 구현은 OpenCL(Open Computing Language)을 이용하였다. 실험 결과 사용자 정의 쓰레드 기반 고속 처리와 비교하여 초고화질 해상도 이미지(UHD 4K : $3,840{\times}2,160$)를 기준으로 최대 5배의 성능 향상의 결과를 보여주었다.

With the help of fast growing multimedia technology and high preference for users of large screens, the newest video coding standard, HEVC (High Efficiency Video Coding) high-quality video compression), has been introduced. Therefore, the high definition image services which are four times more clear than conventional HD video, are getting popular. JPEG 2000 also has stated to support 4K and 8K UHD. As a result, it requires fast processing technology to read and write UHD images. This paper introduces a study on fast parallel processing technology for UHD images. For this purpose, first, JPEG 2000 is reviewed and a GPU based parallel implementation is proposed for a preprocessing of color conversion stage. The parallelled algorithm is implemented with OpenCL (Open Computing Language). The simulation results show that the proposed method shows 5 times performance improvements on processing speed for 4K UHD over the method using threads.

키워드

참고문헌

  1. 김제우, 김동순, 신화선, 최병호, "UHD(Ultra High Definition) 콘텐츠용 실시간 획득, 저장 및 편집 시스템 기술, 방송공학회지 제17권 제4호, pp. 69-80, 2012년 10월.
  2. 배성호, 하광성, 김문철, 조숙희, 최진수, HEVC 기반 초고선명(4K-UHD) 비디오 시청품질 특성 분석, 2012년도 한국방송공학회 하계 학술대회, pp. 446-449, 2012년 7월.
  3. 백봉진, 류준호, 김정길, 이상운, 초고화질 해상도용 4K/8K JPEG 2000 고속 압축 처리를 위한 연구, 2014년 한국방송공학회 추계학술대회, 2014, 11. 07
  4. Cheong Ghil Kim, Do Hyun Lee, JeomGu Kim, "Optimizing Image Processing on Multi-core CPUs with Intel Parallel Programming Technologies," Multimedia Tools and Applications January 2014, Vol. 68, Issue 2, pp. 237-251, Jan. 2014. https://doi.org/10.1007/s11042-011-0906-y
  5. Cheong Ghil Kim and Bong Jin Beak, "Fast JPEG Color Space Conversion on Shared Memory", International Conference onInformation Science and Applications (ICISA), pp. 1-3, 2013
  6. 박세진, 마정현, 박찬익, "GPGPU 응용의 고성능 원격수행을 위한 OpenCL 기반 오프로딩 프레임워크", 한국차세대컴퓨팅학회 논문지 Vol.9 No.2, pp. 44-53, 2013년 4월
  7. Cheong Ghil Kim Yong Soo Choi, "A high performance parallel DCT with OpenCL on heterogeneous computing environment Multimedia Tools and Applications, Vol. 64(2), pp. 475-489, May 2013 https://doi.org/10.1007/s11042-012-1028-x
  8. A. Skodras, C. Christopoulos, and T. Ebrahimi, "The JPEG2000 Still Image Compression Standard," IEEE Signal Processing Magazine, Vol. 18, Issue. 5, pp. 36-58, Sep.2001. https://doi.org/10.1109/79.952804
  9. 김재준, 홍진우, JPEG2000 정지영상 부호화 기술 개요, 전자통신동향분석 제17권 제4호, pp. 65-74, 2002년 8월. https://doi.org/10.22648/ETRI.2002.J.170406