
ETRI Journal, Volume 37, Number 1, February 2015 © 2015 Wen-Long Sun and Jie Guan 165
http://dx.doi.org/10.4218/etrij.15.0113.1237

In this paper, we focus on a novel technique called the
cube–linear attack, which is formed by combining cube
attacks with linear attacks. It is designed to recover the
secret information in a probabilistic polynomial and can
reduce the data complexity required for a successful
attack in specific circumstances. In addition to the
different combination strategies of the two attacks, two
cube–linear schemes are discussed. Applying our method
of a cube–linear attack to a reduced-round Trivium, as an
example, we get better linear cryptanalysis results. More
importantly, we believe that the improved linear
cryptanalysis technique introduced in this paper can be
extended to other ciphers.

Keywords: Cryptanalysis, linear cryptanalysis, cube–
linear attack, Trivium, stream cipher.

Manuscript received Nov. 26, 2013; revised Sept. 13, 2014; accepted Nov. 4, 2014.
This work was supported by the National Natural Science Foundation of China (Grant No.

61202491, 61272041, and 61272488).
Wen-Long Sun (corresponding author, swl_cipher@163.com) is with the Information

Science and Technology Institute, Zhengzhou, Henan Province and also with Beijing Satellite
Navigation Center, Beijing, China.

Jie Guan (guanjie007@163.com) is with the Information Science and Technology Institute,
Zhengzhou, China.

I. Introduction

Linear cryptanalysis is an effective known-plaintext attack
(KPA) against block ciphers. At present, KPA has been adapted
to stream ciphers [1]–[5]. M. Matsui and A. Yamagishi [6], in
1992, introduced the idea of linear cryptanalysis in an attack on
FEAL [7]. The techniques used in this attack were refined by
M. Matsui and had a dramatic effect on the Data Encryption
Standard (DES). This eventually led to the first experimental
cryptanalysis of the cipher being reported in the open
community [8]–[9].

Subsequently, several refinements to the basic idea of linear
cryptanalysis have been suggested to improve the efficiency of
the attacks it envelops, either in specific circumstances or in
all cases. In 1994, B.S. Kaliski and M.J.B. Robshaw [10]
proposed an extension to linear cryptanalysis based on the use
of multiple linear approximations. S.K. Langford and M.E.
Hellman [11], in 1994, introduced the differential–linear attack,
which is a mix of both differential cryptanalysis and linear
cryptanalysis. In 1996, L.R. Kundsen and M.J.B. Robshaw
[12] introduced the idea of extending M. Matsui’s linear
cryptanalytic techniques to more general cases in which non-
linear relations are also considered. In [13], zero-correlation
linear cryptanalysis, the counterpart of impossible differential
cryptanalysis in the domain of linear cryptanalysis, was
proposed by A. Bogdanov and V. Rijmen, resulting in a faster
attack for some ciphers.

1. Motivation and Contribution

As introduced above, there have been several extensions to
linear cryptanalysis at present. Nevertheless, is there any
available information not yet exploited by previous linear
cryptanalysis methods?

In this paper, we answer this question positively. Generally
speaking, linear cryptanalysis exploits specific correlations

Novel Technique in Linear Cryptanalysis

Wen-Long Sun and Jie Guan

166 Wen-Long Sun and Jie Guan ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0113.1237

between the input and the output of cryptographic primitives.
For almost any cryptographic scheme, each output bit can be
described by a multivariate polynomial over GF(2) in both the
public variables and the secret variables. As we know, a very
powerful tool to recover the secret variables is cube attacks,
proposed by [14]. To derive the secret information, the attacker
sums this bit over all possible values of a subset of the public
variables. The summations are used to derive linear equations
in the secret variables, which can be efficiently solved. When
launching linear attacks, we can, in specific scenarios, obtain
the explicit description of a multivariate polynomial. Since
the polynomial’s probability is less than one after one or
several approximations in linear attacks, we have to adapt our
use of cube attacks in such cases because they are used only
on such polynomials when the polynomial’s probability is
equal to one.

Here, we combine cube attacks with linear attacks to propose
a novel method called cube–linear attack, aiming to recover the
secret variables of a probabilistic multivariate polynomial. It
uses information that both cube attacks and linear attacks use.
Once the secret variables have been recovered, the degree of
non-linear monomials involving the recovered bits would
decrease and may even fall to zero. This is the same result as
desired by linear attacks. Subsequent cryptanalysis results
prove our method to be efficient.

In addition to the two combination scenarios (using linear
attacks during a cube attack and using cube attacks during a
linear attack), two schemes, A and B, are discussed. The data
complexity and success rate of each scheme can be calculated
only when all the derived polynomials [14] defined by any
determined cube index are independent. Otherwise, the
situations are too complex to give any concrete computational
formula using the existing theories. An introduction to the
detailed theory of our method is given in Section III.
Afterwards, an improved linear cryptanalysis is proposed using
the cube–linear attack as a novel technique. As an application,
we cryptanalyze the security of the eSTREAM finalist,
Trivium, against linear cryptanalysis. Three linear
approximations with the same average bias, 2–23.2, are found,
and four key bits are recovered for the reduced version of
Trivium with the initialization of 288 rounds (out of 1,152).
The data complexity is 247.2 IVs with 97.8% success rate,
improving upon previous linear cryptanalysis results. Although
a few better cryptanalysis results on Trivium have been
published using other attacks ([14], [15], and [16]), it’s
confirmed that our method is meaningful from the point of
view of improving linear cryptanalysis.

For convenience, we particularly follow the relevant
concepts and terminology of cube attacks. Although based on
the same essence of higher-order differential cryptanalysis,

there are some differences between cube attacks and our cube–
linear attack. Firstly, cube attacks are applied to such a
polynomial having probability one, while our method copes
with probabilistic polynomials. Secondly, the primary cost of
cube attacks lies in the searching of the appropriate cube
indexes, while our method focuses on an explicit polynomial.
Moreover, they are two different methods, and our cube–linear
attack is proposed as an improved technique for linear
cryptanalysis.

2. Organization

This paper is organized as follows. In Section II, we briefly
review cube attacks and linear cryptanalysis. Afterwards, we
describe the theory of our cube–linear attack and propose an
improved linear cryptanalysis (Section III). In Section IV, we
apply our method to a specific analysis on Trivium. Finally, we
make a few concluding remarks in Section V.

II. Cube Attacks and Linear Cryptanalysis

1. Review of Cube Attacks

Cube attacks [14], first formalized by I. Dinur and A. Shamir
at EUROCRYPT 2009, are a generic type of algebraic attack
and can be applied to any cryptosystem, provided that the
attacker has access to a bit of information that can be
represented by a low-degree multivariate polynomial over
GF(2).

In almost any cryptographic scheme, each output bit, zi, can
be described by a multivariate master polynomial over GF(2)
comprising public variables v1, v2, … , vm, which are either bits
of the plaintext of a block cipher or bits of the initial vector of a
stream cipher and that are dependent upon secret variables x1,
x2, … , xn — zi = p(v1, … , vm, x1, … , xn).

To simplify our notation, the distinction between public and
private variables is now ignored. Given a multivariate master
polynomial with n variables p(x1, … , xn) over GF(2) in
algebraic normal form (ANF) and a term tI containing variables
from an index subset I that are multiplied together, the
polynomial can be rewritten as the sum of terms that are
supersets of I and terms that miss at least one variable from
I : 1 S() 1(, ,) (, ,),n I I np x x t P q x x    where PS(I) is
called the superpoly of I in p. Note that the superpoly of I in p
is a polynomial that does not contain any variables in common
with tI, and each term in q(x1, … , xn) does not contain at least
one variable from I.

Any subset I of size s defines an s-dimensional Boolean cube
of 2s vectors, CI, in which we assign all the possible
combinations of 0/1 values to variables in I and leave all the

ETRI Journal, Volume 37, Number 1, February 2015 Wen-Long Sun and Jie Guan 167
http://dx.doi.org/10.4218/etrij.15.0113.1237

other variables undetermined. Any vector Iv C defines a
new derived polynomial p|v with n – s variables (whose degree
may be the same or lower than the degree of the original
polynomial). Summing these derived polynomials over all the
2s possible vectors in CI, we end up with a new polynomial,

which is denoted by .I vp p


 A maxterm of p is a term

tI such that the superpoly PS(I) of I in p is a linear polynomial
that is not a constant.
Theorem 1 [14]. For any polynomial p and subset of variables
I, we have S()I Ip P mod 2.

Cube attacks have two phases. In the first preprocessing
phase, the task is to find as many maxterms and corresponding
linear superpolys as possible. In the next phase, the online
phase, the attacker solves the system of linear equations
obtained and acquires some values related to the secret
variables.

2. Review of Linear Cryptanalysis

The basic idea behind linear cryptanalysis is to find some
linear approximation to the action of cryptographic primitives.
In other words, what the attacker exploits are some statistical
correlations between the input and the output. For a
cryptosystem with k-bit key 1 2(, , ,),kk k k n-bit plaintext

1 2(, , ,),np p p and ciphertext 1 2(, , ,),nc c c the task of
the attacker is to find the index sets I, J, and L such that

j l i
j J l L i I

p c k
  

    (1)

holds with probability 1 2 , 0.p    
For the block and stream ciphers, linear attacks are usually

executed as follows. First, we look for the linear or nonlinear
approximations of different rounds, and then we combine them.
From this, we can obtain final linear approximations for the
whole cryptosystem with probability calculated according to
Lemma 1 (piling-up Lemma).
Lemma 1 [8]. For each value i, 1 i n  , let Xi be a random
variable, independent of Xj for all j i , such that

(0) , (1) 1 .i i i iP X p P X p     Then

 1
1 2

1

1
(0) 2 1 2 .

2

n
n

n i
i

P X X X p



       (2)

Given a linear approximation, it is possible to determine one
bit of information about the key ii I

k
 with the help of

Algorithm 1 [8]. The core idea of Algorithm 1 is a maximum-
likelihood.

Algorithm 1. Determination of key information.

T : = # of plaintexts (out of N) such that the left side of (1)
is equal to 0.

IF T > N/2
THEN guess 0ik  (when p > 1/2) or 1 (otherwise)

ELSE guess 1ik  (when p > 1/2) or 0 (otherwise)

END

The computational formula of the success rate to recover the
key ii I

k
 is as follows [8] and is related to both the data

complexity N (the number of plaintext/ciphertext pairs) and the
bias :

2 2

2

1
d .

2π
x

N
e x








  (3)

The main goal of linear cryptanalysis is to find an effective
linear approximation. However, thus far, there has been no
optimal algorithm to look for such a linear approximation for
any cryptosystem. In this paper, we tentatively put forward a
novel technique called cube–linear attack, contributing to linear
cryptanalysis.

III. Improved Linear Cryptanalysis

1. Cube–Linear Attack

This subsection provides the basic theory of our cube–linear
attack. Generally speaking, linear cryptanalysis exploits
specific correlations between the input and output of
cryptographic primitives. For almost any cryptographic
scheme, each output bit can be described by a multivariate
master polynomial over GF(2) in the public variables and the
secret variables. When launching linear attacks, we can, in
specific scenarios, obtain the explicit description of a
multivariate polynomial (,)iz p v k with probability p*.
Based on cube attacks, the polynomial (,)iz p v k is easily
split into the form 1 S() 1(, ,) (, ,)n I I np x x t P q x x   
for any term tI. We can determine the maxterm tI leading to a
linear expression PS(I), and then the secret variables in the
resultant system of polynomial equations can be efficiently
solved. Since the polynomial’s probability, p*, is less than one
after one or several approximations in linear attacks and cube
attacks are only used on such polynomials when their
probability is equal to one, the actual use of cube attacks in this
case means that they first need to be adapted prior to their use.
Here, we combine cube attacks with linear attacks to propose a
novel method called a cube–linear attack, aiming to recover the
secret variables of a probabilistic multivariate polynomial.
Based on the aforementioned different ways of combining
cube attacks and linear attacks, two schemes, A and B, are
discussed under the following attack condition: all derived
polynomials defined by any determined maxterm are

168 Wen-Long Sun and Jie Guan ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0113.1237

independent.

A. Description of Scheme A

Scheme A can be considered as the “cube–linear–cube”
attack, the name befittingly corresponding to the three steps
that it incorporates. The following analysis embodies a more
detailed introduction of scheme A. Based on the split
polynomial S()(,) (,),I Ip v k t P q v k   as mentioned above,
we can easily determine the maxterm leading to an expression
PS(I) of which the degree d(PS(I)) is one. Correspondingly, I and
CI are also distinct. Running all the possible values of CI, any
vector Iv C can define a derived polynomial p|v with
probability *

vp (*
vp stands for the probability of p|v when

CI takes the value v on condition that the polynomial
(,)iz p v k holds with probability p*). Let us denote K|v the

XOR of all the monomials involving only the key information
in the derived polynomial p|v. Then K|v can be determined by
Algorithm 1 since the derived polynomial p|v is a linear
expression when considering K|v as a single variable. Similar to
cube attacks, we can obtain a new linear equation when
summing all the recovered K|v.

Scheme A

Step 1. Determine the maxterm tI.
Step 2. Recover K|v in each derived polynomial p|v by Algorithm 1.
Step 3. Sum all the recovered K|v, and then the value |

I
vv C

K
 is

known.

Theorem 2. The data complexity of scheme A is

  22 1 2 1 *
A 0 0

1 2 ,
s s

v vv v
N N O p

 

 
    and the success

rate of scheme A is  2 12 1
A 0

1 2 2 1 2 ,
ss

vv
 


   where

s is the size of index subset I; Nv and v are respectively

referred to as the data complexity and the success rate to
recover K|v using Algorithm 1.
Proof. Since the probability of the derived polynomial p|v is

*
vp , the data complexity to recover K|v is easily calculated

as  2* 1 2v vN O p


  with a confident success rate v

according to Algorithm 1. Consequently, the total data

complexity of scheme A is
2 1

A 0

s

vv
N N




 

  22 1 *

0
1 2

s

vv
O p




 .

Let *
v be the failure rate to recover |vK , then * 1v v   .

For simplicity, we may as well denote “0” and “1” as the
“right” and “wrong” values of |vK , respectively; that is,

 | 0v vp K   and   *
| 1v vp K   , respectively. Based

on the aforementioned attack condition, we deduce that all the
recovered |vK are independent of each other. Therefore,

the success rate of scheme A is  2 1

A 0
0

s

vv
p K 


  

 2 12 1

0
1 2 2 1 2

ss

vv



  by Lemma 1. ■

B. Description of Scheme B

Scheme B

Step 1. Determine the maxterm tI.
Step 2. Sum all the derived polynomials p|v, then we have

S() |
I

I vv C
P p




 .

Step 3. Recover the key information in PS(I) by Algorithm 1.

Corresponding to the above three steps, the first two steps of

scheme B are actually the use of the cube attack, and then the
key information in PS(I) can be determined with the help of
Algorithm 1.
Theorem 3. The data complexity of scheme B is

  2
2 12 1 *

B 0
2 1 2





 
  

 


ss

vv
N O p with a confident success

rate B .

Proof. Under the aforementioned attack condition, all the
derived polynomials p|v defined by Iv C hold

independently with probability *.vp So, the bias that

S() |
I

I vv C
P p


 holds is calculated as

2 12 1 *

0
2 1 2

ss

vv
p






due to Lemma 1. By Algorithm 1, the data complexity NB to
recover the key information in PS(I) with a confident success
rate B is

   2
2 12 1 *

0
2 1 2 .

ss

vv
O p





 
 

 
 ■

C. Comments on Schemes A and B

It should be noted that the recovered key information using
scheme A is the same as that of scheme B.
Theorem 4. When the probability of each derived polynomial

*
vp satisfies * 1.51 2 2 ,vp   A B2 1

2

2 
 s

s

N N (equality

holds iff * 1.51 2 2vp  ), where s is the size of index subset

I; and NA and NB represent respectively the data complexity of
scheme A and scheme B.
Proof. According to Theorem 2 and Theorem 3,

  22 1 *
A 0

1 2
s

vv
N O p




  and   2

2 12 1 *
B 0

2 1 2 .
ss

vv
N O p





 
  

 


Let   2
*2 1 2 , (1,),v v vx p x


     then

2 1

A 0
4

s

vv
N x




 

ETRI Journal, Volume 37, Number 1, February 2015 Wen-Long Sun and Jie Guan 169
http://dx.doi.org/10.4218/etrij.15.0113.1237

and
2 1

B 0
4 .

s

vv
N x




  If NA = NB and all xv share the same

value, then it’s deduced that (2 1)2
ss

vx  .

When (2 1)2
ss

vx  , we have the following:

2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 12 1 2 1

0 1 2 2

1 1

1

1 1 1 1
2 1.

2 2 2 2

s

s

s

s

s s

s

vv

vv

i i

s
s s s s

x x x x

x x xx

x x x x x x x x

x x x



 





  



  


   



       









  




 

Specifically, when 2vx  ; that is, * 1.51 2 2vp   , we have

2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 12 1 2 1

0 1 2 2

2 1 2 1 2 1 2 1

1 1

1

1 1 1 2
.

2 2 2 2

s

s

s

s

s s

s

s s s s

vv

vv

i i

s

x x x x

x x xx

x x x x x x x x

x x x



 





  



   

  


   



     









  




 

That is, A B2 1

2

2 
 s

s

N N . ■

We have proved that A B B2 1

2

2 
 s

s

N N N only when

the probability *
vp of each derived polynomial satisfies

* 1.51 2 2vp   . The results haven’t yet been proved for the

remaining scenarios. With regard to the success rate of the two

schemes,  2 12 1
A 0

1 2 2 1 2 


  
ss

vv
— where rB is equal

to rv depending on the relationship between the data
complexity and the bias. If no more plaintext/ciphertext pairs
exist, then the success rate of scheme A would be lower than
that of scheme B.

Table 1 provides some comparisons between schemes A and
B at the same level of success rate. It shows that scheme A is in
fact more superior in most scenarios because of the following
reasons: First of all, since the probability of the derived

polynomial *
vp in most cases satisfies * 1.51 2 2vp   ,

it means that NA << NB according to our calculations.
Secondly, the success rate rA doesn’t rapidly drop due to

 2 12 1
A 0

1 2 2 1 2 .
ss

vv
 


   Furthermore, scheme A

Table 1. Comparison between schemes A and B.

2–1.3 2–6 2–9 ε

s NA NB NA NB NA NB

Success
rate

1 24 23.2 213.4 222 219.4 234

2 25.3 24.4 214.7 242 220.7 266

3 26.5 26.8 215.9 282 221.9 2130

97.8%

could actually be enhanced by increasing a few plaintext/
ciphertext pairs based on the theory of linear cryptanalysis.
Taken together, when to choose scheme A or scheme B should
depend on the particular situation.

Remark 1. For both schemes, the first thing we need to do in
practice after determining the maxterm tI is to verify whether
the attack condition comes into existence or not. If it is tenable,
then we have the above theorems. Otherwise, the situations are
too complicated to obtain any concrete results for the data
complexity and success rate of the two schemes using the
present theory.

2. Improved Linear Cryptanalysis

For a probabilistic polynomial, it is the secret variables
recovered by our cube–linear attack that have never before
been exposed by previous linear cryptanalysis. Consequently,
it’s confirmed that the cube–linear attack indeed provides us
with a paradise of improvement in linear cryptanalysis. Overall,
the improved linear cryptanalysis could be summarized as
follows.

Improved linear cryptanalysis.

When obtaining a polynomial zi = p(v, k) with probability p*:
Step 1. Verify whether the attack condition comes into existence or

not, if it is tenable, then go to the next step; Otherwise, our
theory won’t work.

Step 2. Based on Theorems 2, 3, and 4, choose a better scheme
(scheme A or B) to recover the key information.

Step 3. Combining the recovered key information, carry on looking
for its linear approximation.

As an application, we cryptanalyze the security of the

eSTREAM finalist, Trivium, against linear cryptanalysis using
our method in the next section.

IV. Improved Linear Cryptanalysis on Trivium

1. Trivium Stream Cipher

Trivium [17], a hardware-oriented stream cipher, was

170 Wen-Long Sun and Jie Guan ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0113.1237

designed by C. De Canniѐre and B. Preneel and was selected
for the final eSTREAM portfolio [18]. It takes an 80-bit key K
and an 80-bit initial value (IV) as input. The internal state
consists of 288 bits, which are aligned in three non-linear
feedback shift registers of lengths 93, 84, and 111. It is claimed
to be suitable to generate up to 264 bits of keystream from a pair
of key and IV. They are initialized as follows:

1 2 93 1 80(, , ,) (, , , 0, , 0),s s s k k  

94 177 1 80(, ,) (iv , , iv , 0, ,0),s s   

178 288(, ,) (0, , 0, 1, 1, 1)s s   .

The state is then updated iteratively by the following round
transformation:

1 66 93 ,t s s 

2 162 177 ,t s s 

3 243 288 ,t s s 

1 2 3 ,z t t t  

1 66 91 92 93 171,t s s s s s    

2 162 175 176 177 264 ,t s s s s s    

3 243 286 287 288 69 ,t s s s s s    

1 2 93 3 1 92(, , ... ,) (, , ... ,),s s s t s s

94 95 177 1 94 176(, , ... ,) (, , ... ,),s s s t s s

178 179 288 2 178 287(, , ... ,) (, , ... ,)s s s t s s .

No output is produced during the first 1,152 rounds. After
this initialization phase, the value of z is output as the key
stream at each round.

2. Description of Attack Process

For the 288-round Trivium, we have

1 288 288 288

288 288 288

(66) (93) (162)

(177) (243) (288),

z s s s

s s s

  
  

 (4)

where st(i) is the ith internal state bit at time t. The output z1 is
the sum of bits s288(66), s288(93), s288(162), s288(177), s288(243),
and s288(288). The ANF of z1 is found exhaustively in terms of
the internal state bit at t = 144 as [5]

1 144 144 144 144 144

144 144 144 144 144

144 144 144 144 144

144 144 144 144 144

144 1

(6) (16) (17) (31) (32)

(33) (57) (82) (83) (84)

(96) (97) (98) (99) (111)

(129) (142) (143) (144) (150)

(162)

z s s s s s

s s s s s

s s s s s

s s s s s

s s

    
    
    
    
  44 144 144 144

144 144 144 144 144

144 144 144 144

(163) (164) (165) (186)

(192) (208) (209) (210) (231)

(235) (236) (237) (252),

s s s

s s s s s

s s s s

  
    
   

 (5)

and its closest linear approximation [5] is

1 144 144 144 144

144 144 144 144

144 144 144 144

144 144 144 144

144 144

(6) (33) (57) (84)

(96) (99) (111) (129)

(144) (150) (162) (165)

(186) (192) (210) (231)

(237) (252)

z s s s s

s s s s

s s s s

s s s s

s s

   
   
   
   
 

 (6)

with bias 2–9.

Since the purpose of the attack is to find a linear

approximation in the key, IV and output bits, the linear

approximation given above is to be rewritten in terms of s0(i),

1, 2, ... , 80, 94, 95, ... , 173.i  The remaining terms are

omitted since they are assigned to constants during the

initialization phrase. Now, we have the right equation in (7)

(see Appendix A), whereas it should be noted that there is

something wrong in the one given by M.S. Turan and O. Kara

[5], which would affect the subsequent results.
Next, we show that there are still some improvements for our

purpose when using a cube–linear attack. For the sake of
analysis, we denote Kmonomials and IVmonomials the XOR of
monomials involving only the key bits and the XOR of
monomials involving only the IV bits, respectively and set the
XOR of the remaining monomials as (IV·K) monomials. Then, (7)
could be written as follows:

 
25 14 25 41

26 13 26

1 monomials monomials monomials

monomials monomials 25

40 31 20 31 47

32 19 32 46 32 44 45 49 38

4

39 40

26 38 39

3 5 46

9

1 4

iv iv

iv

IV IV

IV iv

iv iv iv

iv iv iv iv

iv

iv

iv

k k

z K K

K k k

k k k k

k k

k k

k kk k k

   

      

       
       

 

  
   
 49 63 64 50 62 6365 50 37 50 64

70 59 71 758 6 65 77 64

iv iv i iv

i

v

iv iv iv .v

k kk k k k

k

k

k k k

       
    

  
  

(8)
Observing (8), it is very easy to split it into the form

1 S() 1(, ,) (, ,)n I I np x x t P q x x    and to determine
whether there is such an index subset I that leads to a linear
expression PS(I) based on the basic idea of cube attacks.
Actually, the four index subsets {70}, {71}, {76}, and {77} in
(8) are available for recovering k58, k59, k64, and k65, respectively.
Taking the index subset I = {77} as a case in point, we explain
how to recover k64 using our method.

Step 1. Determine the index subset I = {77} and CI = {iv77}
accordingly.

Step 2. According to cube attacks, the other public variables
could be assigned any values except for those variables
belonging to CI. For simplicity, we set iv25, iv26, iv31, iv32, iv49,
and iv50 to zero. When iv77 = 0 (that is, iv25, iv26, iv31, iv32, iv49,
iv50, iv70, iv71, iv76, and iv77 all equal zero), we get the following:

monomials K z , (9)

ETRI Journal, Volume 37, Number 1, February 2015 Wen-Long Sun and Jie Guan 171
http://dx.doi.org/10.4218/etrij.15.0113.1237

Table 2. Key information recovered.

(iv25, iv26, iv31, iv32, iv49,

iv50, iv70, iv71, iv76, iv77)
Key Bias

Data
complexity

Success
rate (%)

(0, 0, 0, 0, 0,

0, 0, 0, 0, 0)
Kmonimials 2–9 219 99.77

(0, 0, 0, 0, 0,

0, 1, 0, 0, 0)
Kmonimials+k59 2–9 219 99.77

(0, 0, 0, 0, 0,

0, 0, 1, 0, 0)
Kmonimials+k58 2–9 219 99.77

(0, 0, 0, 0, 0,

0, 0, 0, 1, 0)
Kmonimials+k65 2–9 219 99.77

(0, 0, 0, 0, 0,

0, 0, 0, 0, 1)
Kmonimials+k64 2–9 219 99.77

which holds with a bias of 2–9, where z stands for the XOR of
all the known variables in (8) after assigning IV. When iv77 = 1
(that is, iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76 are all equal
zero, and iv77 equals one), we get the following:

64 monomials  k K z , (10)

which holds with a bias of 2–9, where z stands for the XOR
of all the known variables in (8) after assigning IV.

Note that (9) and (10) are independent of each other since
the key bit k64 could be considered as a random variable.
According to Theorem 4 and Table 1, here, we can achieve a
lower data complexity using scheme A compared to scheme B
at the same level of success rate. Therefore, we can
respectively recover Kmonomials and k64 + Kmonomials with a success
rate of 99.77% and data complexity of 219 IVs according to
scheme A.

Step 3. Based on the above analysis, k64 = (k64 + Kmonomials) +
(Kmonomials). The success rate to recover k64 is 99.54% requiring
220 IVs. Here, the total success rate 99.54% is approximately
calculated as 0.99772 since the failure rate (1–0.9977) is so
small that (1–0.9977)2 can be ignored according to Theorem 2.

Similarly, k58, k59, and k65 can be recovered correspondingly
for the other index subsets {70}, {71}, and {76}. Therefore, we
can simultaneously recover the four key bits k58, k59, k64, and
k65 with success rate 98.17% (0.99778) and 221.32 IVs
(19 21.325 2 2 ). The above results are given in Table 2.

3. Search for Better Linear Approximations

The above attack provides us with a paradise of
improvement in the search for better linear approximations.
Since we aren’t aware of the actual values of the four key bits
recovered and they are dependent upon concrete scenarios,
note that all 16 possible values of the four bits now have to be
considered. In the following article, we take (k58, k59, k64, k65) =

(1, 1, 1, 1) as an example to illustrate how to look for linear
approximations with bigger bias.

Returning (k58, k59, k64, k65) = (1, 1, 1, 1) to (7), we have
equation (11) (see Appendix A). Observing (11), there are 34
linear, 48 quadratic, and 18 cubic terms. The linear
approximation to (11) could be naturally obtained as

37 38

54 57 63 67

1 3 6 1

68 69

5

72

49

50 70 7

21 27 30

39 3

6 21 24 30 33 39 45

5 6 71 7 871 7 72

=1

iv

iv iv iv iv iv iv iv

iv iv

iv

iv iv iv iv iviv

k k

k k k k k k k

z k k k k k k

k

      
 

  


      

      
    



 (12)

with bias 65 48 18 56.562 (0.25) (0.375) 2 ,   assuming all
nonlinear terms are independent.

According to (5)–(12), the bias that (12) holds could be
calculated as IV 29 56.56 64.56 402 2 2 2 2 2          (|IV|
is referred to as the size of IV, and in particular, it is 80 bits for
Trivium). However, the bias is too small to be used to recover
any information about the key. According to the method used
in [5], the magnitude of the bias can be increased when
allowed to choose some special key bits and IV bits.
Unfortunately, the rules of selection weren’t provided, and
furthermore, the selected bits in [5] weren’t also the best. So,
here, Algorithm 2 (see Appendix B) is proposed to choose
those special key bits or IV bits.

Denote { | 0, 1 80}K i ik k i     and IV {iv |iv 0,i i  
1 80}i  as the key bit set chosen to zero and the IV bit set
chosen to zero, respectively. Then, |ΩK| and |ΩIV| represent the
size of ΩK and ΩIV, respectively, and n1 and n2 are referred to as
the individual quantity of the remaining quadratic and cubic
terms, respectively, after ΩK and ΩIV have been determined.
The bias of a linear approximation to (11) is calculated as
follows:

1 2 1 2 1 2() 1 992 2 2 (0.25) (0.375) (0.5) (0.75) .n n n n n n         

When given |ΩK| and |ΩIV|, we can make use of Algorithm 2
to choose ΩK and ΩIV. Algorithm 2 takes finding better linear
approximations as a criterion, and the main ideas are to select
such a bit that can eliminate the most nonlinear monomials
when being set to zero. More detailed rules to cope with more
complicated scenarios are showed in Algorithm 2. When |ΩK| =
10 and |ΩIV| = 10, for instance, Table 3 provides the two sets
ΩK and ΩIV using Algorithm 2.

According to the different ΩK of Table 3, three linear
approximations with the same bias 2–23 are found. These are

37 38

54 57 63 67 68 69 72

49

1 3 6 15 21 27 30 39

3 6

21 24 30 33 50

70

39 45

51 71 72 76 77 78

= 1

iv iv

i iv ivv iv iv iv iv iv

iv iv iviv iv iv iv ,

k kz k k k k k

k k k k k k k

k k      
  

   

 
     




  
     

 (13)

172 Wen-Long Sun and Jie Guan ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0113.1237

Table 3. (ΩK, ΩIV) and corresponding bias ε.

(ΩIV, |ΩIV| = 10) (ΩK, |ΩK| = 10) Bias

k5 2–23

k67 2–23
iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55

k13 k19 k23 k38

k40 k45 k46 k50 k63
k68 2–23

Table 4. (k58, k59, k64, k65) and corresponding (ΩK, ΩIV).

(k58,k59,k64,k65) |ΩIV| = 10 |ΩK| = 10 Bias

k5 2–23

k67 2–23

(0, 0, 0, 0)

(0, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 0, 0)

iv10 iv13 iv25 iv31 iv34
iv37 iv40 iv50 iv54 iv55

k13 k19 k23 k38

k39 k40 k45 k46 k50
k68 2–23

k5 2–23

k67 2–23

(0, 0, 1, 1)

(0, 1, 1, 1)

(1, 0, 1, 1)

(1, 1, 1, 1)

iv10 iv13 iv25 iv31 iv34
iv37 iv40 iv50 iv54 iv55

k13 k19 k23 k38

k40 k45 k46 k50 k63
k68 2–23

k5 2–23

k67 2–23

(0, 0, 0, 1)

(0, 1, 0, 1)

(1, 0, 0, 1)

(1, 1, 0, 1)

iv10 iv13 iv25 iv31 iv34
iv37 iv40 iv50 iv54 iv55

k13 k19 k38 k39

k40 k45 k46 k50 k62
k68 2–23

k5 2–24

k67 2–24

(0, 0, 1, 0)

(0, 1, 1, 0)

(1, 0, 1, 0)

(1, 1, 1, 0)

iv10 iv13 iv25 iv31 iv34
iv37 iv40 iv50 iv54 iv55

k13 k19 k38 k39

k40 k45 k46 k50 k63
k68 2–24

Table 5. Comparison with previous results.

 (|ΩK|, |ΩIV|) Bias Num.
Data

complexity
Success rate

(%)

Turan [5] (10, 10) 2–31 1 262 97.8

Ours (10, 10) 2–23.2 3 247.2 97.8

Jia [19] (10, 13) 2–31 2 261 97.8

Ours (10, 13) 2–20.2 3 241.2 97.8

1 3 6 15 21 27 30 39

3 6 21

24 30 33 39

37 38

54 57 63 68 69 72

49 50

70 76 7

45 51

71 72 7 78

= 1

iv iv iv

iv iv iv iv iv

iv iv iv iv ,

iv iv iv

iv iv

z k k k k k k kk k

k k k k k k

      
  

    

 
     

 
    




 (14)

and

1 3 6 15 21 27 30 39

3 6 21

24 30 33 39

37 38

54 57 63 67 69 72

49 50

70 76 7

45 51

71 72 7 78

= 1

iv iv iv

iv iv iv iv iv

iv iv iv iv .

iv iv iv

iv iv

z k k k k k k kk k

k k k k k k

      
   

    

 
    

 
   




 (15)

Similarly, when (k58, k59, k64, k65) takes the other 15 possible
values, linear approximations can also be found with the same

method. The corresponding results are concluded in Table 4.

4. Comparison with Previous Results

For the reduced version of 288-round Trivium, M.S. Turan
and O. Kara in [5] found a linear approximation with bias of
2–31 when |ΩK| = 10 and |ΩIV| = 10. In [19], Jia and others
presented a multiple linear cryptanalysis on 288-round Trivium,
resulting in another linear approximation with the same bias
2–31 when |ΩK| = 10 and |ΩIV| = 13. In this paper, we find some
linear approximations with bigger bias. Moreover, the
additional four key bits are recovered. These results are
summarized in Table 5. Obviously, our attack is better than the
previous.

V. Conclusion

In cryptography, linear cryptanalysis is the most basic
cryptanalysis approach aiming to look for a linear relation
between inputs and outputs. A variety of refinements to the
attack have been suggested in the past. In this paper, a novel
technique called cube–linear attack is proposed (for the first
time) to take a probabilistic polynomial as the attack target and
furthermore to mine the secret information that has yet to be
exploited by previous linear cryptanalysis methods. It is
beneficial to allow for a reduction in the amount of data
required for a successful attack in specific circumstances.
Applying our method to a specific analysis on Trivium, we get
better linear cryptanalysis results. Although a few better
cryptanalytic results on Trivium had been published earlier
using other attacks, we believe that our method is meaningful
from the point of view of improving linear cryptanalysis;
furthermore, it could be extended to other ciphers. For example,
we have improved the bias of the revised 288-round Trivium
algorithms proposed in [20] and [21] by 214 and 24, respectively.
Therefore, our method is worth considering in launching linear
attacks on a cryptosystem.

Appendix A

The two equations (7) and (11) appearing in this paper are as
follows:

1 3 6 15 21 27 30 39

3 6 21 24 30 33 39 45 51

72 4 5 13 14 13 41 16 17

19 20 22 23 25 26 28 29

54 57 67 68

6

3

9 72

78 14 40

19 47 4 320 46

1

iv iv iv iv iv iv iv i

iv

v iv

iv

z k k k k k k k

k k k k k k k k

k k k k k k k

k k k k

k k k

k k

k k

k k k k

        

       

   

  

  

      

             5

37 38 43 44

49 50 52 53 58 59 61 62

64 65 67 68 70 71 10 11 13 14 25 26

31 3

37 65 38 6

2

4 39 40 45 46

63 64 77 64

434 35 3 8 17 3 40 56

iv iv iv iv iv iv

iv iv iv iv iv iv iv iv

iv

iv iv

k k k k

k k k k k k k k

k

k k k k k k k k

k k k

k k k k k

       

          

           

      

  



 



 495 505 iv iv 

ETRI Journal, Volume 37, Number 1, February 2015 Wen-Long Sun and Jie Guan 173
http://dx.doi.org/10.4218/etrij.15.0113.1237

54 55

76 65 19 45

58 59 61 62 67 68 70 71

73 74 13 39 40 14 38 39

20 44 45 37

38 62 63 44 4

46

63 64 70 59 38 39 40 38 39 41

44 45 4 5 476

iv iv iv iv iv iv iiv iv

iv

v iv

iv iv

iv

k k k k k k

k k k k

k

k k k k

k k k k k k k k k

k k kk k k k k k

        
      


 

  
   

          
         

71 58 62 63 65 40 54 55

5

62 63 64

41 53 54

53 54 55 25 14 25 41

26 1

3 54 56 25 39

3 26 40 31 20 31 47

32 46 32

40

26 38 39 31 45 46

iv iv iv iv

iv iv i

iv iv iv

iv iv iv iv iv

iv i

v

v iv iv

i

i

v

v

i

iv

v

iv

k k k k

k k

k k k

k k

k k

k kk k k

k k


 

 

         
         




    
 

      
  49 619 32 44 45 49 38 49 65

50 37 5

3 64

50 64 0 62 63

iv iv iv

iv iv

iv

iv . (7)
k k k k

k k

k k

k k

      

    

  



37 38 54

57 63 67 68 69 72

49 50 70

76 77

1 3 6 15 21 27 30 39

3 6 21 24

30 33 39 45 51 71

72 4 5 13 14 13 41

16 17 19 20

78

14 40 19

1

iv iv iv iv

iv iv iv i iv iv iv

iv i

v iv iv

iv v iv

k k k

k k k k

z k k k k k k k

k k k k k k

k k k k

k k

k k k

  



       

    
     

   

   
  

    

 



      22 23

25 26 28 29 34 35 37 38 37

4

47 20 46

63 39 4

3 44 49 50 52 53 61 62 67 68

70 71 10 11 70 71 10 11 13 14 25 26

31 32 34 35 37 3

0

45 46

iv iv iv iv iv iv iv iv

iv iv iv iv iv iv

k k

k k k k k k k k k

k k k k k k k

k k k

k k k

k k k k

k k k k

k

  
         

          

           




 



     41 55

54

8 40 56

49 50 58 59 61 62 7 85 65 6

iv iv

iv iv

iv iv

iv iv iv iv iv iv iv iv

  
       




19 45 46

38 39 40 38 39

70 71 73 74 13 39 40 14 38 39

20 44 45 384 62 63

44 45 47 40 5

1

44 4 4 55

53 5

5 46 41 53 54

53 54 55 25 14 56 4

i

iv iv iv iv

iv iv iv v iv iv

iv iv iv iviv iv iv vi

k k k

k k k k k k

k k

k k k k k k

k k k k k k

k k kk

k

           
         

          

      


 



  25 41

26 13 26 40 3125 39 40 26 38 20

31 47 32 46 32 19 32 44 45

49 38 50 3

39

31 45 46

49 63 507 62 63

iv iv iv

iv

iv iv

iv

iv i

iv iv iv

iv i vv . (11)

k k k k

k k

k

k k k

k

k k

k k k k

kk k


        

      

     

  



 

 



 

Appendix B

Algorithm 2. Algorithm to choose special key and IV bits.

Reset ΩK and ΩIV;
Input : nK and nIV (sizes of ΩK and ΩIV to choose respectively)
Step 1: Reset Ω and Π, count the frequency of each bit in all
nonlinear monomials, put the bits with the highest frequency in Ω;
Step 2:

1. When |Ω| = 1, determine the type of the bit in Ω, if it is key bit,
then put it to ΩK, otherwise ΩIV;

2. When |Ω| ≥ 2, count the frequency of quadratic term of each bit
in Ω, put the bits with the highest frequency in Π:
2.2.1 If |Π| = 1, determine type of the bit in Π, if it is key bit,

then put it to ΩK, otherwise ΩIV;
2.2.2 If |Π| ≥ 2, choose arbitrarily one bit in Π, and determine

type, if it is key bit, put it in ΩK, otherwise ΩIV;
Step 3: Calculate the polynomial again, based on chosen ΩK and ΩIV;
Step 4:

if  IV IV(| |) & & (| |)K Kn n    Return to Step 1;

else if  IV IV(| |) & & (| |)K Kn n   

Stop searching the key bits, return to Step 1, and continue to
search the IV bits;

else if  IV IV(| |) & & (| |)K Kn n   

Stop searching the IV bits, return to Step 1, and continue to
search the key bits;

else if  IV IV(| |) & & (| |)K Kn n   

Output:  IV(,),K  

End

References

[1] J.D. Golić, “Linear Cryptanalysis of Stream Ciphers,” Fast Softw.

Encryption: Int. Workshop, Leuven, Belgium, Dec. 14–16, 1994,

pp. 154–169.

[2] J.D. Golić, V. Bagini, and G. Morgari, “Linear Cryptanalysis

of Bluetooth Stream Cipher,” EUROCRYPT, Amsterdam,

Netherlands, Apr. 28–May 2, 2002, pp. 238–255.

[3] F. Muller and T. Peyrin, “Linear Cryptanalysis of the TSC

Family of Stream Ciphers,” ASIACRYPT, Chennai, India, Dec.

4–8, 2005, pp. 373–394.

[4] S. Khazaei and M. Hassanzadeh, “Linear Sequential Circuit

Approximation of the Trivium Stream Ciphers,” ECRYPT

Stream Cipher Project, EU, Rep. 2005/063, Jan. 2006.

[5] M.S. Turan and O. Kara, “Linear Approximations for 2-Round

Trivium,” Int. Conf. Security Inf. Netw., Gazimagusa, North

Cyprus, May 8–10, 2007, pp. 96–105.

[6] M. Matsui and A. Yamagishi, “A New Method for Known

Plaintext Attack of FEAL Cipher,” EUROCRYPT, Balatonfüred,

Hungary, May 24–28, 1992, pp. 81–91.

[7] A. Shimizu and S. Miyaguchi, “Fast Data Encipherment

Algorithm FEAL,” EUROCRYPT, Amsterdam, Netherlands,

Apr. 13–15, 1987, pp. 267–278.

[8] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,”

EUROCRYPT, Lofthus, Norway, May 23–27, 1993, pp. 386–

397.

[9] M. Matsui, “The First Experimental Cryptanalysis of the Data

Encryption Standard,” CRYPTO, Santa Barbara, CA, USA, Aug.

21–25, 1994, pp. 1–11.

[10] B.S. Kaliski and M.J.B. Robshaw, “Linear Cryptanalysis Using

Multiple Approximations,” CRYPTO, Santa Barbara, CA, USA,

Aug. 21–25, 1994, pp. 26–39.

[11] S.K. Langford and M.E. Hellman, “Differential-Linear

Cryptanalysis,” CRYPTO, Santa Barbara, CA, USA, Aug. 21–25,

1994, pp. 17–25.

[12] L.R. Knudsen and M.J.B. Robshaw, “Non-linear

Approximations in Linear Cryptanalysis,” EUROCRYPT,

Saragossa, Spain, May 12–16, 1996, pp. 224–236.

[13] A. Bogdanov and V. Rijmen, Linear Hulls with Correlation Zero

and Linear Cryptanalysis of Block Ciphers, Cryptology ePrint

Archive, 2011. Accessed Aug. 5, 2013. http://eprint.iacr.org/

2011/123

[14] I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box

174 Wen-Long Sun and Jie Guan ETRI Journal, Volume 37, Number 1, February 2015
http://dx.doi.org/10.4218/etrij.15.0113.1237

Polynomials,” EUROCRYPT, Cologne, Germany, Apr. 26–30,

2009, pp. 278–299.

[15] M. Vielhaber, Breaking ONE.FIVIUM by AIDA an Algebraic IV

Differential Attack, Cryptology ePrint Archive, 2007. Accessed

Aug. 10, 2013. http://eprint.iacr.org/2007/413

[16] P.-A. Fouque and T. Vannet, “Improving Key Recovery to 784

and 799 Rounds of Trivium Using Optimized Cube Attacks,”

Fast Softw. Encryption: Int. Workshop, Singapore, Mar. 11–13,

2013, pp. 502–517.

[17] C. De Cannière and B. Preneel, “TRIVIUM: A Stream Cipher

Construction Inspired by Block Cipher Design Principles,” Inf.

Security, Samos Island, Greece, Aug. 30–Sept. 2, 2006, pp. 171–

186.

[18] eSTREAM, The ECRYPT Stream Cipher Project, 2008.

Accessed Nov. 15, 2013. http://www.ecrypt.eu.org/stream

[19] Y. Jia et al., “Linear Cryptanalysis of 2-Round Trivium with

Multiple Approximations,” J. Electron. Inf. Technol., vol. 33, no.

1, 2011, pp. 223–227.

[20] M. Afzal and A. Masood, Modifications in the Design of Trivium

to Increase its Security Level, Cryptology ePrint Archive Report,

2009. Accessed Aug. 15, 2013. http://eprint.iacr.org/2009/250

[21] A.S. Raj and C. Srinivasan, “Analysis of Algebraic Attack on

Trivium and Minute Modification to Trivium,” Conf. Netw.

Security Appl., Chennai, India, July 15–17, 2011, pp. 35–42.

Wen-Long Sun received his BE and MSc

degrees in cryptology from the Information

Science and Technology Institute, Zhengzhou,

China, in 2011 and 2014, respectively. Now, he

is an assistant engineer at the Beijing Satellite

Navigation Center, Beijing, China. His main

research interests include cryptology and

information security.

Jie Guan received her PhD degree in cryptology

from the Information Science and Technology

Institute, Zhengzhou, China, in 2004. She is

currently a professor at the Information Science

and Technology Institute. Her main subject

interest is cryptology, and she teaches information

systems, the theory of cryptography, and

quantum computation.

