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In this paper, we focus on a novel technique called the 
cube–linear attack, which is formed by combining cube 
attacks with linear attacks. It is designed to recover the 
secret information in a probabilistic polynomial and can 
reduce the data complexity required for a successful 
attack in specific circumstances. In addition to the 
different combination strategies of the two attacks, two 
cube–linear schemes are discussed. Applying our method 
of a cube–linear attack to a reduced-round Trivium, as an 
example, we get better linear cryptanalysis results. More 
importantly, we believe that the improved linear 
cryptanalysis technique introduced in this paper can be 
extended to other ciphers. 
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I. Introduction 

Linear cryptanalysis is an effective known-plaintext attack 
(KPA) against block ciphers. At present, KPA has been adapted 
to stream ciphers [1]–[5]. M. Matsui and A. Yamagishi [6], in 
1992, introduced the idea of linear cryptanalysis in an attack on 
FEAL [7]. The techniques used in this attack were refined by 
M. Matsui and had a dramatic effect on the Data Encryption 
Standard (DES). This eventually led to the first experimental 
cryptanalysis of the cipher being reported in the open 
community [8]–[9]. 

Subsequently, several refinements to the basic idea of linear 
cryptanalysis have been suggested to improve the efficiency of 
the attacks it envelops, either in specific circumstances or in  
all cases. In 1994, B.S. Kaliski and M.J.B. Robshaw [10] 
proposed an extension to linear cryptanalysis based on the use 
of multiple linear approximations. S.K. Langford and M.E. 
Hellman [11], in 1994, introduced the differential–linear attack, 
which is a mix of both differential cryptanalysis and linear 
cryptanalysis. In 1996, L.R. Kundsen and M.J.B. Robshaw 
[12] introduced the idea of extending M. Matsui’s linear 
cryptanalytic techniques to more general cases in which non-
linear relations are also considered. In [13], zero-correlation 
linear cryptanalysis, the counterpart of impossible differential 
cryptanalysis in the domain of linear cryptanalysis, was 
proposed by A. Bogdanov and V. Rijmen, resulting in a faster 
attack for some ciphers. 

1. Motivation and Contribution 

As introduced above, there have been several extensions to 
linear cryptanalysis at present. Nevertheless, is there any 
available information not yet exploited by previous linear 
cryptanalysis methods? 

In this paper, we answer this question positively. Generally 
speaking, linear cryptanalysis exploits specific correlations 
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between the input and the output of cryptographic primitives. 
For almost any cryptographic scheme, each output bit can be 
described by a multivariate polynomial over GF(2) in both the 
public variables and the secret variables. As we know, a very 
powerful tool to recover the secret variables is cube attacks, 
proposed by [14]. To derive the secret information, the attacker 
sums this bit over all possible values of a subset of the public 
variables. The summations are used to derive linear equations 
in the secret variables, which can be efficiently solved. When 
launching linear attacks, we can, in specific scenarios, obtain 
the explicit description of a multivariate polynomial. Since 
the polynomial’s probability is less than one after one or 
several approximations in linear attacks, we have to adapt our 
use of cube attacks in such cases because they are used only 
on such polynomials when the polynomial’s probability is 
equal to one. 

Here, we combine cube attacks with linear attacks to propose 
a novel method called cube–linear attack, aiming to recover the 
secret variables of a probabilistic multivariate polynomial. It 
uses information that both cube attacks and linear attacks use. 
Once the secret variables have been recovered, the degree of 
non-linear monomials involving the recovered bits would 
decrease and may even fall to zero. This is the same result as 
desired by linear attacks. Subsequent cryptanalysis results 
prove our method to be efficient. 

In addition to the two combination scenarios (using linear 
attacks during a cube attack and using cube attacks during a 
linear attack), two schemes, A and B, are discussed. The data 
complexity and success rate of each scheme can be calculated 
only when all the derived polynomials [14] defined by any 
determined cube index are independent. Otherwise, the 
situations are too complex to give any concrete computational 
formula using the existing theories. An introduction to the 
detailed theory of our method is given in Section III. 
Afterwards, an improved linear cryptanalysis is proposed using 
the cube–linear attack as a novel technique. As an application, 
we cryptanalyze the security of the eSTREAM finalist, 
Trivium, against linear cryptanalysis. Three linear 
approximations with the same average bias, 2–23.2, are found, 
and four key bits are recovered for the reduced version of 
Trivium with the initialization of 288 rounds (out of 1,152). 
The data complexity is 247.2 IVs with 97.8% success rate, 
improving upon previous linear cryptanalysis results. Although 
a few better cryptanalysis results on Trivium have been 
published using other attacks ([14], [15], and [16]), it’s 
confirmed that our method is meaningful from the point of 
view of improving linear cryptanalysis. 

For convenience, we particularly follow the relevant 
concepts and terminology of cube attacks. Although based on 
the same essence of higher-order differential cryptanalysis, 

there are some differences between cube attacks and our cube–
linear attack. Firstly, cube attacks are applied to such a 
polynomial having probability one, while our method copes 
with probabilistic polynomials. Secondly, the primary cost of 
cube attacks lies in the searching of the appropriate cube 
indexes, while our method focuses on an explicit polynomial. 
Moreover, they are two different methods, and our cube–linear 
attack is proposed as an improved technique for linear 
cryptanalysis. 

2. Organization 

This paper is organized as follows. In Section II, we briefly 
review cube attacks and linear cryptanalysis. Afterwards, we 
describe the theory of our cube–linear attack and propose an 
improved linear cryptanalysis (Section III). In Section IV, we 
apply our method to a specific analysis on Trivium. Finally, we 
make a few concluding remarks in Section V. 

II. Cube Attacks and Linear Cryptanalysis 

1. Review of Cube Attacks 

Cube attacks [14], first formalized by I. Dinur and A. Shamir 
at EUROCRYPT 2009, are a generic type of algebraic attack 
and can be applied to any cryptosystem, provided that the 
attacker has access to a bit of information that can be 
represented by a low-degree multivariate polynomial over 
GF(2). 

In almost any cryptographic scheme, each output bit, zi, can 
be described by a multivariate master polynomial over GF(2) 
comprising public variables v1, v2, … , vm, which are either bits 
of the plaintext of a block cipher or bits of the initial vector of a 
stream cipher and that are dependent upon secret variables x1, 
x2, … , xn — zi = p(v1, … , vm, x1, … , xn). 

To simplify our notation, the distinction between public and 
private variables is now ignored. Given a multivariate master 
polynomial with n variables p(x1, … , xn) over GF(2) in 
algebraic normal form (ANF) and a term tI containing variables 
from an index subset I that are multiplied together, the 
polynomial can be rewritten as the sum of terms that are 
supersets of I and terms that miss at least one variable from 
I : 1 S( ) 1( , , ) ( , , ),n I I np x x t P q x x     where PS(I) is 
called the superpoly of I in p. Note that the superpoly of I in p 
is a polynomial that does not contain any variables in common 
with tI, and each term in q(x1, … , xn) does not contain at least 
one variable from I.  

Any subset I of size s defines an s-dimensional Boolean cube 
of 2s vectors, CI, in which we assign all the possible 
combinations of 0/1 values to variables in I and leave all the 
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other variables undetermined. Any vector Iv C  defines a 
new derived polynomial p|v with n – s variables (whose degree 
may be the same or lower than the degree of the original 
polynomial). Summing these derived polynomials over all the 
2s possible vectors in CI, we end up with a new polynomial, 

which is denoted by .I vp p


  A maxterm of p is a term 

tI such that the superpoly PS(I) of I in p is a linear polynomial 
that is not a constant. 
Theorem 1 [14]. For any polynomial p and subset of variables 
I, we have S( )I Ip P  mod 2.  

Cube attacks have two phases. In the first preprocessing 
phase, the task is to find as many maxterms and corresponding 
linear superpolys as possible. In the next phase, the online 
phase, the attacker solves the system of linear equations 
obtained and acquires some values related to the secret 
variables. 

2. Review of Linear Cryptanalysis 

The basic idea behind linear cryptanalysis is to find some 
linear approximation to the action of cryptographic primitives. 
In other words, what the attacker exploits are some statistical 
correlations between the input and the output. For a 
cryptosystem with k-bit key 1 2( , , , ),kk k k  n-bit plaintext 

1 2( , , , ),np p p  and ciphertext 1 2( , , , ),nc c c  the task of 
the attacker is to find the index sets I, J, and L such that 

j l i
j J l L i I

p c k
  

                    (1) 

holds with probability 1 2 , 0.p       
For the block and stream ciphers, linear attacks are usually 

executed as follows. First, we look for the linear or nonlinear 
approximations of different rounds, and then we combine them. 
From this, we can obtain final linear approximations for the 
whole cryptosystem with probability calculated according to 
Lemma 1 (piling-up Lemma). 
Lemma 1 [8]. For each value i, 1 i n  , let Xi be a random 
variable, independent of Xj for all j i , such that 

( 0) , ( 1) 1 .i i i iP X p P X p      Then 

 1
1 2

1

1
( 0) 2 1 2 .

2

n
n

n i
i

P X X X p



         (2) 

Given a linear approximation, it is possible to determine one 
bit of information about the key ii I

k
  with the help of 

Algorithm 1 [8]. The core idea of Algorithm 1 is a maximum-
likelihood. 

Algorithm 1. Determination of key information. 

T : = # of plaintexts (out of N) such that the left side of (1)  
is equal to 0. 

IF T > N/2 
THEN guess 0ik  (when p > 1/2) or 1 (otherwise) 

ELSE guess 1ik  (when p > 1/2) or 0 (otherwise) 

END 
 

The computational formula of the success rate to recover the 
key ii I

k
  is as follows [8] and is related to both the data 

complexity N (the number of plaintext/ciphertext pairs) and the 
bias : 

2 2

2

1
d .

2π
x

N
e x








           (3) 

The main goal of linear cryptanalysis is to find an effective 
linear approximation. However, thus far, there has been no 
optimal algorithm to look for such a linear approximation for 
any cryptosystem. In this paper, we tentatively put forward a 
novel technique called cube–linear attack, contributing to linear 
cryptanalysis. 

III. Improved Linear Cryptanalysis 

1. Cube–Linear Attack 

This subsection provides the basic theory of our cube–linear 
attack. Generally speaking, linear cryptanalysis exploits 
specific correlations between the input and output of 
cryptographic primitives. For almost any cryptographic 
scheme, each output bit can be described by a multivariate 
master polynomial over GF(2) in the public variables and the 
secret variables. When launching linear attacks, we can, in 
specific scenarios, obtain the explicit description of a 
multivariate polynomial ( , )iz p v k  with probability p*. 
Based on cube attacks, the polynomial ( , )iz p v k  is easily 
split into the form 1 S( ) 1( , , ) ( , , )n I I np x x t P q x x     
for any term tI. We can determine the maxterm tI leading to a 
linear expression PS(I), and then the secret variables in the 
resultant system of polynomial equations can be efficiently 
solved. Since the polynomial’s probability, p*, is less than one 
after one or several approximations in linear attacks and cube 
attacks are only used on such polynomials when their 
probability is equal to one, the actual use of cube attacks in this 
case means that they first need to be adapted prior to their use. 
Here, we combine cube attacks with linear attacks to propose a 
novel method called a cube–linear attack, aiming to recover the 
secret variables of a probabilistic multivariate polynomial. 
Based on the aforementioned different ways of combining 
cube attacks and linear attacks, two schemes, A and B, are 
discussed under the following attack condition: all derived 
polynomials defined by any determined maxterm are 
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independent. 

A. Description of Scheme A 

Scheme A can be considered as the “cube–linear–cube” 
attack, the name befittingly corresponding to the three steps 
that it incorporates. The following analysis embodies a more 
detailed introduction of scheme A. Based on the split 
polynomial S( )( , ) ( , ),I Ip v k t P q v k    as mentioned above, 
we can easily determine the maxterm leading to an expression 
PS(I) of which the degree d(PS(I)) is one. Correspondingly, I and 
CI are also distinct. Running all the possible values of CI, any 
vector Iv C  can define a derived polynomial p|v with 
probability *

vp  ( *
vp  stands for the probability of p|v when  

CI takes the value v on condition that the polynomial 
( , )iz p v k  holds with probability p*). Let us denote K|v the 

XOR of all the monomials involving only the key information 
in the derived polynomial p|v. Then K|v can be determined by 
Algorithm 1 since the derived polynomial p|v is a linear 
expression when considering K|v as a single variable. Similar to 
cube attacks, we can obtain a new linear equation when 
summing all the recovered K|v. 

 

Scheme A 

Step 1. Determine the maxterm tI. 
Step 2. Recover K|v in each derived polynomial p|v by Algorithm 1. 
Step 3. Sum all the recovered K|v, and then the value |

I
vv C

K
  is 

known. 

 
Theorem 2. The data complexity of scheme A is 

  22 1 2 1 *
A 0 0

1 2 ,
s s

v vv v
N N O p

 

 
     and the success 

rate of scheme A is  2 12 1
A 0

1 2 2 1 2 ,
ss

vv
 


    where 

s  is the size of index subset I; Nv and v  are respectively 

referred to as the data complexity and the success rate to 
recover K|v using Algorithm 1. 
Proof. Since the probability of the derived polynomial p|v is 

*
vp , the data complexity to recover K|v is easily calculated    

as  2* 1 2v vN O p


   with a confident success rate v  

according to Algorithm 1. Consequently, the total data 

complexity of scheme A is 
2 1

A 0

s

vv
N N




   

  22 1 *

0
1 2

s

vv
O p




 . 

Let *
v  be the failure rate to recover |vK , then * 1v v   . 

For simplicity, we may as well denote “0” and “1” as the 
“right” and “wrong” values of |vK , respectively; that is, 

 | 0v vp K    and   *
| 1v vp K   , respectively. Based 

on the aforementioned attack condition, we deduce that all the 
recovered |vK  are independent of each other. Therefore,   

the success rate of scheme A is  2 1

A 0
0

s

vv
p K 


    

 2 12 1

0
1 2 2 1 2

ss

vv



  by Lemma 1.               ■ 

B. Description of Scheme B 

Scheme B 

Step 1. Determine the maxterm tI. 
Step 2. Sum all the derived polynomials p|v, then we have 

S( ) |
I

I vv C
P p




 . 

Step 3. Recover the key information in PS(I) by Algorithm 1. 

 
Corresponding to the above three steps, the first two steps of 

scheme B are actually the use of the cube attack, and then the 
key information in PS(I) can be determined with the help of 
Algorithm 1. 
Theorem 3. The data complexity of scheme B is 

  2
2 12 1 *

B 0
2 1 2





 
  

 


ss

vv
N O p  with a confident success 

rate B . 

Proof. Under the aforementioned attack condition, all the 
derived polynomials p|v defined by Iv C  hold 

independently with probability *.vp  So, the bias that 

S( ) |
I

I vv C
P p


  holds is calculated as 

2 12 1 *

0
2 1 2

ss

vv
p




  

due to Lemma 1. By Algorithm 1, the data complexity NB to 
recover the key information in PS(I) with a confident success 
rate B  is 

   2
2 12 1 *

0
2 1 2 .

ss

vv
O p





 
 

 
               ■ 

C. Comments on Schemes A and B 

It should be noted that the recovered key information using 
scheme A is the same as that of scheme B. 
Theorem 4. When the probability of each derived polynomial 

*
vp  satisfies * 1.51 2 2 ,vp    A B2 1

2

2 
 s

s

N N  (equality 

holds iff * 1.51 2 2vp   ), where s is the size of index subset 

I; and NA and NB represent respectively the data complexity of 
scheme A and scheme B. 
Proof. According to Theorem 2 and Theorem 3,  

  22 1 *
A 0

1 2
s

vv
N O p




  and   2

2 12 1 *
B 0

2 1 2 .
ss

vv
N O p





 
  

 
   

Let   2
*2 1 2 , (1, ),v v vx p x


      then 

2 1

A 0
4

s

vv
N x




   
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and 
2 1

B 0
4 .

s

vv
N x




   If NA = NB and all xv share the same 

value, then it’s deduced that (2 1)2
ss

vx  . 

When (2 1)2
ss

vx  , we have the following: 

2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 12 1 2 1

0 1 2 2

1 1

1

1 1 1 1
2 1.

2 2 2 2

s

s

s

s

s s

s

vv

vv

i i

s
s s s s

x x x x

x x xx

x x x x x x x x

x x x



 





  



  


   



       









  




 

 

Specifically, when 2vx  ; that is, * 1.51 2 2vp   , we have 

2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 12 1 2 1

0 1 2 2

2 1 2 1 2 1 2 1

1 1

1

1 1 1 2
.

2 2 2 2

s

s

s

s

s s

s

s s s s

vv

vv

i i

s

x x x x

x x xx

x x x x x x x x

x x x



 





  



   

  


   



     









  




 

 

That is, A B2 1

2

2 
 s

s

N N .                            ■ 

We have proved that A B B2 1

2

2 
 s

s

N N N  only when  

the probability *
vp  of each derived polynomial satisfies 

* 1.51 2 2vp   . The results haven’t yet been proved for the 

remaining scenarios. With regard to the success rate of the two 

schemes,  2 12 1
A 0

1 2 2 1 2 


  
ss

vv
— where rB is equal 

to rv depending on the relationship between the data 
complexity and the bias. If no more plaintext/ciphertext pairs 
exist, then the success rate of scheme A would be lower than 
that of scheme B. 

Table 1 provides some comparisons between schemes A and 
B at the same level of success rate. It shows that scheme A is in 
fact more superior in most scenarios because of the following 
reasons: First of all, since the probability of the derived 

polynomial *
vp  in most cases satisfies * 1.51 2 2vp   ,  

it means that NA << NB according to our calculations.  
Secondly, the success rate rA doesn’t rapidly drop due to 

 2 12 1
A 0

1 2 2 1 2 .
ss

vv
 


    Furthermore, scheme A  

Table 1. Comparison between schemes A and B. 

2–1.3 2–6 2–9    ε

s NA NB NA NB NA NB 

Success 
rate 

1 24 23.2 213.4 222 219.4 234 

2 25.3 24.4 214.7 242 220.7 266 

3 26.5 26.8 215.9 282 221.9 2130 

97.8%

 

 
could actually be enhanced by increasing a few plaintext/ 
ciphertext pairs based on the theory of linear cryptanalysis. 
Taken together, when to choose scheme A or scheme B should 
depend on the particular situation. 

Remark 1. For both schemes, the first thing we need to do in 
practice after determining the maxterm tI is to verify whether 
the attack condition comes into existence or not. If it is tenable, 
then we have the above theorems. Otherwise, the situations are 
too complicated to obtain any concrete results for the data 
complexity and success rate of the two schemes using the 
present theory. 

2. Improved Linear Cryptanalysis 

For a probabilistic polynomial, it is the secret variables 
recovered by our cube–linear attack that have never before 
been exposed by previous linear cryptanalysis. Consequently, 
it’s confirmed that the cube–linear attack indeed provides us 
with a paradise of improvement in linear cryptanalysis. Overall, 
the improved linear cryptanalysis could be summarized as 
follows. 
 

Improved linear cryptanalysis. 

When obtaining a polynomial zi = p(v, k) with probability p*: 
Step 1. Verify whether the attack condition comes into existence or 

not, if it is tenable, then go to the next step; Otherwise, our 
theory won’t work. 

Step 2. Based on Theorems 2, 3, and 4, choose a better scheme 
(scheme A or B) to recover the key information. 

Step 3. Combining the recovered key information, carry on looking 
for its linear approximation. 

 
As an application, we cryptanalyze the security of the 

eSTREAM finalist, Trivium, against linear cryptanalysis using 
our method in the next section. 

IV. Improved Linear Cryptanalysis on Trivium 

1. Trivium Stream Cipher 

Trivium [17], a hardware-oriented stream cipher, was 
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designed by C. De Canniѐre and B. Preneel and was selected 
for the final eSTREAM portfolio [18]. It takes an 80-bit key K 
and an 80-bit initial value (IV) as input. The internal state 
consists of 288 bits, which are aligned in three non-linear 
feedback shift registers of lengths 93, 84, and 111. It is claimed 
to be suitable to generate up to 264 bits of keystream from a pair 
of key and IV. They are initialized as follows: 

1 2 93 1 80( , , , ) ( , , , 0, , 0),s s s k k    

94 177 1 80( , , ) (iv , , iv , 0, ,0),s s     

178 288( , , ) (0, , 0, 1, 1, 1)s s   . 

The state is then updated iteratively by the following round 
transformation: 

1 66 93 ,t s s   

2 162 177 ,t s s   

3 243 288 ,t s s   

1 2 3 ,z t t t    

1 66 91 92 93 171,t s s s s s      

2 162 175 176 177 264 ,t s s s s s      

3 243 286 287 288 69 ,t s s s s s      

1 2 93 3 1 92( , , ... , ) ( , , ... , ),s s s t s s  

94 95 177 1 94 176( , , ... , ) ( , , ... , ),s s s t s s  

178 179 288 2 178 287( , , ... , ) ( , , ... , )s s s t s s . 

No output is produced during the first 1,152 rounds. After 
this initialization phase, the value of z  is output as the key 
stream at each round. 

2. Description of Attack Process 

For the 288-round Trivium, we have 

1 288 288 288

288 288 288

(66) (93) (162)

(177) (243) (288),

z s s s

s s s

  
  

     (4) 

where st(i) is the ith internal state bit at time t. The output z1 is 
the sum of bits s288(66), s288(93), s288(162), s288(177), s288(243), 
and s288(288). The ANF of z1 is found exhaustively in terms of 
the internal state bit at t = 144 as [5] 

1 144 144 144 144 144

144 144 144 144 144

144 144 144 144 144

144 144 144 144 144

144 1

(6) (16) (17) (31) (32)

(33) (57) (82) (83) (84)

(96) (97) (98) (99) (111)

(129) (142) (143) (144) (150)

(162)

z s s s s s

s s s s s

s s s s s

s s s s s

s s

    
    
    
    
  44 144 144 144

144 144 144 144 144

144 144 144 144

(163) (164) (165) (186)

(192) (208) (209) (210) (231)

(235) (236) (237) (252),

s s s

s s s s s

s s s s

  
    
   

  (5) 

and its closest linear approximation [5] is 

1 144 144 144 144

144 144 144 144

144 144 144 144

144 144 144 144

144 144

(6) (33) (57) (84)

(96) (99) (111) (129)

(144) (150) (162) (165)

(186) (192) (210) (231)

(237) (252)

z s s s s

s s s s

s s s s

s s s s

s s

   
   
   
   
 

    (6) 

with bias 2–9. 

Since the purpose of the attack is to find a linear 

approximation in the key, IV and output bits, the linear 

approximation given above is to be rewritten in terms of s0(i), 

1, 2, ... , 80, 94, 95, ... , 173.i   The remaining terms are 

omitted since they are assigned to constants during the 

initialization phrase. Now, we have the right equation in (7) 

(see Appendix A), whereas it should be noted that there is 

something wrong in the one given by M.S. Turan and O. Kara 

[5], which would affect the subsequent results. 
Next, we show that there are still some improvements for our 

purpose when using a cube–linear attack. For the sake of 
analysis, we denote Kmonomials and IVmonomials the XOR of 
monomials involving only the key bits and the XOR of 
monomials involving only the IV bits, respectively and set the 
XOR of the remaining monomials as (IV·K) monomials. Then, (7) 
could be written as follows: 

 
25 14 25 41

26 13 26

1 monomials monomials monomials

monomials monomials 25

40 31 20 31 47

32 19 32 46 32 44 45 49 38

4

39 40

26 38 39

3 5 46

9

1 4

iv iv

iv

IV IV

IV iv

iv iv iv

iv iv iv iv

iv

iv

iv

k k

z K K

K k k

k k k k

k k

k k

k kk k k

   

      

       
       

 

  
   
 49 63 64 50 62 6365 50 37 50 64

70 59 71 758 6 65 77 64

iv iv i iv

i

v

iv iv iv .v

k kk k k k

k

k

k k k

       
    

  
  

 

(8) 
Observing (8), it is very easy to split it into the form 

1 S( ) 1( , , ) ( , , )n I I np x x t P q x x     and to determine 
whether there is such an index subset I that leads to a linear 
expression PS(I) based on the basic idea of cube attacks. 
Actually, the four index subsets {70}, {71}, {76}, and {77} in 
(8) are available for recovering k58, k59, k64, and k65, respectively. 
Taking the index subset I = {77} as a case in point, we explain 
how to recover k64 using our method. 

Step 1. Determine the index subset I = {77} and CI = {iv77} 
accordingly. 

Step 2. According to cube attacks, the other public variables 
could be assigned any values except for those variables 
belonging to CI. For simplicity, we set iv25, iv26, iv31, iv32, iv49, 
and iv50 to zero. When iv77 = 0 (that is, iv25, iv26, iv31, iv32, iv49, 
iv50, iv70, iv71, iv76, and iv77 all equal zero), we get the following: 

monomials K z ,                 (9) 
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Table 2. Key information recovered. 

(iv25, iv26, iv31, iv32, iv49, 

iv50, iv70, iv71, iv76, iv77) 
Key Bias 

Data 
complexity

Success 
rate (%)

(0, 0, 0, 0, 0, 

0, 0, 0, 0, 0) 
Kmonimials 2–9 219 99.77 

(0, 0, 0, 0, 0, 

0, 1, 0, 0, 0) 
Kmonimials+k59 2–9 219 99.77 

(0, 0, 0, 0, 0, 

0, 0, 1, 0, 0) 
Kmonimials+k58 2–9 219 99.77 

(0, 0, 0, 0, 0, 

0, 0, 0, 1, 0) 
Kmonimials+k65 2–9 219 99.77 

(0, 0, 0, 0, 0, 

0, 0, 0, 0, 1) 
Kmonimials+k64 2–9 219 99.77 

 

 
which holds with a bias of 2–9, where z stands for the XOR of 
all the known variables in (8) after assigning IV. When iv77 = 1 
(that is, iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76 are all equal 
zero, and iv77 equals one), we get the following: 

64 monomials  k K z ,             (10) 

which holds with a bias of 2–9, where z  stands for the XOR 
of all the known variables in (8) after assigning IV. 

Note that (9) and (10) are independent of each other since  
the key bit k64 could be considered as a random variable. 
According to Theorem 4 and Table 1, here, we can achieve a 
lower data complexity using scheme A compared to scheme B 
at the same level of success rate. Therefore, we can 
respectively recover Kmonomials and k64 + Kmonomials with a success 
rate of 99.77% and data complexity of 219 IVs according to 
scheme A. 

Step 3. Based on the above analysis, k64 = (k64 + Kmonomials) + 
(Kmonomials). The success rate to recover k64 is 99.54% requiring 
220 IVs. Here, the total success rate 99.54% is approximately 
calculated as 0.99772 since the failure rate (1–0.9977) is so 
small that (1–0.9977)2 can be ignored according to Theorem 2. 

Similarly, k58, k59, and k65 can be recovered correspondingly 
for the other index subsets {70}, {71}, and {76}. Therefore, we 
can simultaneously recover the four key bits k58, k59, k64, and  
k65 with success rate 98.17% (0.99778) and 221.32 IVs 
( 19 21.325 2 2  ). The above results are given in Table 2. 

3. Search for Better Linear Approximations 

The above attack provides us with a paradise of 
improvement in the search for better linear approximations. 
Since we aren’t aware of the actual values of the four key bits 
recovered and they are dependent upon concrete scenarios, 
note that all 16 possible values of the four bits now have to be 
considered. In the following article, we take (k58, k59, k64, k65) = 

(1, 1, 1, 1) as an example to illustrate how to look for linear 
approximations with bigger bias. 

Returning (k58, k59, k64, k65) = (1, 1, 1, 1) to (7), we have 
equation (11) (see Appendix A). Observing (11), there are 34 
linear, 48 quadratic, and 18 cubic terms. The linear 
approximation to (11) could be naturally obtained as 

37 38

54 57 63 67

1 3 6 1

68 69

5

72

49

50 70 7

21 27 30

39 3

6 21 24 30 33 39 45

5 6 71 7 871 7 72

=1

iv

iv iv iv iv iv iv iv

iv iv

iv

iv iv iv iv iviv

k k

k k k k k k k

z k k k k k k

k

      
 

  


      

      
    



 (12) 

with bias 65 48 18 56.562 (0.25) (0.375) 2 ,    assuming all 
nonlinear terms are independent. 

According to (5)–(12), the bias that (12) holds could be 
calculated as IV 29 56.56 64.56 402 2 2 2 2 2           (|IV| 
is referred to as the size of IV, and in particular, it is 80 bits for 
Trivium). However, the bias is too small to be used to recover 
any information about the key. According to the method used 
in [5], the magnitude of the bias can be increased when 
allowed to choose some special key bits and IV bits. 
Unfortunately, the rules of selection weren’t provided, and 
furthermore, the selected bits in [5] weren’t also the best. So, 
here, Algorithm 2 (see Appendix B) is proposed to choose 
those special key bits or IV bits. 

Denote { | 0, 1 80}K i ik k i     and IV {iv |iv 0,i i    
1 80}i   as the key bit set chosen to zero and the IV bit set 
chosen to zero, respectively. Then, |ΩK| and |ΩIV| represent the 
size of ΩK and ΩIV, respectively, and n1 and n2 are referred to as 
the individual quantity of the remaining quadratic and cubic 
terms, respectively, after ΩK and ΩIV have been determined. 
The bias of a linear approximation to (11) is calculated as 
follows: 

1 2 1 2 1 2( ) 1 992 2 2 (0.25) (0.375) (0.5) (0.75) .n n n n n n           

When given |ΩK| and |ΩIV|, we can make use of Algorithm 2 
to choose ΩK and ΩIV. Algorithm 2 takes finding better linear 
approximations as a criterion, and the main ideas are to select 
such a bit that can eliminate the most nonlinear monomials 
when being set to zero. More detailed rules to cope with more 
complicated scenarios are showed in Algorithm 2. When |ΩK| = 
10 and |ΩIV| = 10, for instance, Table 3 provides the two sets 
ΩK and ΩIV using Algorithm 2. 

According to the different ΩK of Table 3, three linear 
approximations with the same bias 2–23 are found. These are 

37 38

54 57 63 67 68 69 72

49

1 3 6 15 21 27 30 39

3 6

21 24 30 33 50

70

39 45

51 71 72 76 77 78

= 1

iv iv

i iv ivv iv iv iv iv iv

iv iv iviv iv iv iv ,

k kz k k k k k

k k k k k k k

k k      
  

   

 
     




  
     

 (13) 
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Table 3. (ΩK, ΩIV) and corresponding bias ε. 

(ΩIV, |ΩIV| = 10) (ΩK, |ΩK| = 10)  Bias 

k5 2–23 

k67 2–23 
iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 

k13 k19 k23 k38 

k40 k45 k46 k50 k63 
k68 2–23 

 

Table 4. (k58, k59, k64, k65) and corresponding (ΩK, ΩIV). 

(k58,k59,k64,k65) |ΩIV| = 10 |ΩK| = 10 Bias

k5 2–23

k67 2–23

(0, 0, 0, 0) 

(0, 1, 0, 0) 

(1, 0, 0, 0) 

(1, 1, 0, 0) 

iv10 iv13 iv25 iv31 iv34 
iv37 iv40 iv50 iv54 iv55 

k13 k19 k23 k38 

k39 k40 k45 k46 k50 
k68 2–23

k5 2–23

k67 2–23

(0, 0, 1, 1) 

(0, 1, 1, 1) 

(1, 0, 1, 1) 

(1, 1, 1, 1) 

iv10 iv13 iv25 iv31 iv34 
iv37 iv40 iv50 iv54 iv55 

k13 k19 k23 k38 

k40 k45 k46 k50 k63 
k68 2–23

k5 2–23

k67 2–23

(0, 0, 0, 1) 

(0, 1, 0, 1) 

(1, 0, 0, 1) 

(1, 1, 0, 1) 

iv10 iv13 iv25 iv31 iv34 
iv37 iv40 iv50 iv54 iv55 

k13 k19 k38 k39 

k40 k45 k46 k50 k62 
k68 2–23

k5 2–24

k67 2–24

(0, 0, 1, 0) 

(0, 1, 1, 0) 

(1, 0, 1, 0) 

(1, 1, 1, 0) 

iv10 iv13 iv25 iv31 iv34 
iv37 iv40 iv50 iv54 iv55 

k13 k19 k38 k39 

k40 k45 k46 k50 k63 
k68 2–24

 

Table 5. Comparison with previous results. 

 (|ΩK|, |ΩIV|) Bias Num. 
Data 

complexity 
Success rate 

(%) 

Turan [5] (10, 10) 2–31 1 262 97.8 

Ours (10, 10) 2–23.2 3 247.2 97.8 

Jia [19] (10, 13) 2–31 2 261 97.8 

Ours (10, 13) 2–20.2 3 241.2 97.8 

 

 

1 3 6 15 21 27 30 39

3 6 21

24 30 33 39

37 38

54 57 63 68 69 72

49 50

70 76 7

45 51

71 72 7 78

= 1

iv iv iv

iv iv iv iv iv

iv iv iv iv ,

iv iv iv

iv iv

z k k k k k k kk k

k k k k k k

      
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 
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 
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


 (14) 

and 

1 3 6 15 21 27 30 39

3 6 21

24 30 33 39

37 38
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49 50

70 76 7

45 51

71 72 7 78

= 1

iv iv iv

iv iv iv iv iv
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iv iv iv
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    

 
    

 
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


 (15) 

Similarly, when (k58, k59, k64, k65) takes the other 15 possible 
values, linear approximations can also be found with the same 

method. The corresponding results are concluded in Table 4. 

4. Comparison with Previous Results 

For the reduced version of 288-round Trivium, M.S. Turan 
and O. Kara in [5] found a linear approximation with bias of  
2–31 when |ΩK| = 10 and |ΩIV| = 10. In [19], Jia and others 
presented a multiple linear cryptanalysis on 288-round Trivium, 
resulting in another linear approximation with the same bias  
2–31 when |ΩK| = 10 and |ΩIV| = 13. In this paper, we find some 
linear approximations with bigger bias. Moreover, the 
additional four key bits are recovered. These results are 
summarized in Table 5. Obviously, our attack is better than the 
previous. 

V. Conclusion 

In cryptography, linear cryptanalysis is the most basic 
cryptanalysis approach aiming to look for a linear relation 
between inputs and outputs. A variety of refinements to the 
attack have been suggested in the past. In this paper, a novel 
technique called cube–linear attack is proposed (for the first 
time) to take a probabilistic polynomial as the attack target and 
furthermore to mine the secret information that has yet to be 
exploited by previous linear cryptanalysis methods. It is 
beneficial to allow for a reduction in the amount of data 
required for a successful attack in specific circumstances. 
Applying our method to a specific analysis on Trivium, we get 
better linear cryptanalysis results. Although a few better 
cryptanalytic results on Trivium had been published earlier 
using other attacks, we believe that our method is meaningful 
from the point of view of improving linear cryptanalysis; 
furthermore, it could be extended to other ciphers. For example, 
we have improved the bias of the revised 288-round Trivium 
algorithms proposed in [20] and [21] by 214 and 24, respectively. 
Therefore, our method is worth considering in launching linear 
attacks on a cryptosystem. 

Appendix A 

The two equations (7) and (11) appearing in this paper are as 
follows:  
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Appendix B 

Algorithm 2. Algorithm to choose special key and IV bits. 

Reset ΩK and ΩIV; 
Input : nK and nIV (sizes of ΩK and ΩIV to choose respectively) 
Step 1: Reset Ω and Π, count the frequency of each bit in all 
nonlinear monomials, put the bits with the highest frequency in Ω; 
Step 2: 

1. When |Ω| = 1, determine the type of the bit in Ω, if it is key bit, 
then put it to ΩK, otherwise ΩIV; 

2. When |Ω| ≥ 2, count the frequency of quadratic term of each bit 
in Ω, put the bits with the highest frequency in Π: 
2.2.1 If |Π| = 1, determine type of the bit in Π, if it is key bit, 

then put it to ΩK, otherwise ΩIV; 
2.2.2 If |Π| ≥ 2, choose arbitrarily one bit in Π, and determine 

type, if it is key bit, put it in ΩK, otherwise ΩIV; 
Step 3: Calculate the polynomial again, based on chosen ΩK and ΩIV;
Step 4: 

if  IV IV(| | ) & & (| | )K Kn n     Return to Step 1; 

else if  IV IV(| | ) & & (| | )K Kn n     

Stop searching the key bits, return to Step 1, and continue to 
search the IV bits; 

else if  IV IV(| | ) & & (| | )K Kn n     

Stop searching the IV bits, return to Step 1, and continue to 
search the key bits; 

else if  IV IV(| | ) & & (| | )K Kn n     

Output:  IV( , ),K    

End 
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