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This paper deals with optimal power allocation for 
channel estimation of orthogonal frequency-division 
multiplexing uplinks in time-varying channels. In the 
existing literature, the estimation of time-varying channel 
response in an uplink environment can be accomplished 
by estimating the corresponding channel parameters. 
Accordingly, the optimal power allocation studied in the 
literature has been in terms of minimizing the mean 
square error of the channel estimation. However, the  
final goal for channel estimation is to enable the 
application of coherent detection, which usually means 
high spectral efficiency. Therefore, it is more meaningful 
to optimize the power allocation in terms of capacity. In 
this paper, we investigate capacity with imperfect channel 
estimation. By exploiting the derived capacity expression, 
an optimal power allocation strategy is developed. With 
this developed power allocation strategy, improved 
performance can be observed, as demonstrated by the 
numerical results. 
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I. Introduction 

Orthogonal frequency-division multiplexing (OFDM) 
modulation can transmit data in parallel by modulating a 
number of orthogonal subcarriers and has been widely used in 
modern communication systems [1]. In an OFDM system, the 
frequency-selective channel is converted into multiple flat 
fading subchannels, which can greatly simplify the design of  
the equalizer in the receiver [2]. 

The optimization problem for the channel estimation of an 
OFDM system has been widely addressed in existing literature 
[3]–[7]. For pilot-based channel estimation, an optimal 
interpolation can be achieved using a two-dimensional Wiener 
filter [3]. However, due to the complexity of its implementation, 
an optimal Wiener interpolator cannot be used in practice; thus, 
other interpolators have to be adopted [6]–[7]. The optimal 
pilot pattern in terms of sampling efficiency has been suggested 
in [4] and further addressed in [5]. The optimal pilot design for 
capacity maximization is also investigated [8]. However, since 
pilot-based channel estimation assumes a channel to be 
unchanged in one OFDM symbol, the corresponding 
optimization is not valid for the situation where a channel 
changes inside of one OFDM symbol. 

For an even faster time-varying channel response, a series of 
basis expansion model (BEM)–based algorithms have been 
proposed in [9]–[12], where different kinds of basis functions 
are employed to model the time-varying channel. 
Mathematically, the BEM can be considered as an application 
of the rank reduction decomposition [13], and an optimal 
decomposition strategy has been developed in terms of 
minimizing the mean square error (MSE) [12]. Although 
BEM-based algorithms allow a channel to vary inside of one 
OFDM symbol, several drawbacks are obvious [14]. Due to 
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the finite expansion order of basis functions for channel 
response, the inherent model error by truncation cannot be 
avoided. Moreover, the estimated model coefficients are only 
valid for one symbol duration; thus, they have to be re-
estimated on a symbol-by-symbol basis. 

Recently, algorithms for estimating time-varying channels in 
a macrocellular uplink environment have been proposed in 
[15]–[17]. Accordingly, the optimal power allocation ratio of 
training symbol to data symbol has been derived in [17] in 
terms of minimizing the MSE of the channel estimation. 
Although this particular kind of optimum power allocation 
strategy is useful for channel estimation, the final goal for 
channel estimation is to enable the application of coherent 
detection, which usually means high spectral efficiency. 
Therefore, the optimization should be more meaningful if 
carried out in terms of optimizing the capacity rather than MSE. 
As an extension of the research of [17], capacity is chosen as 
the performance indicator in this paper. Correspondingly, the 
power allocation strategy is re-derived in this paper, aiming to 
maximize the capacity for OFDM transmission with imperfect 
channel estimation. 

The rest of this paper is organized as follows. The system 
model is described in Section II. The expression of capacity 
with imperfect channel estimation is derived in Section III. The 
practical capacity with the inverse channel detection (ICD) 
estimator is derived in Section IV. In Section V, the optimal 
power allocation strategy is discussed. Numerical results are 
presented in Section VI. Finally, the conclusion is given in 
Section VII. 

II. System Model 

1. Signal Model 

For OFDM transmission in a time-varying channel, the 
detected signal can be represented in vector form as 

    , y Hd w                 (1) 

where T
0 1 1( , , , )Nd d d  d  denotes the frequency domain 

symbols with covariance matrix H 2
dE( ) , Idd  and 

T
0 1 1( , , , )Nw w w  w  is the additive noise with covariance 

matrix H 2
wE( ) . Iww  Here, I is an N × N identity matrix 

and N is the subcarrier number during the OFDM transmission. 

Usually, it is assumed that d and w have zero means. The 

symbol H represents the channel matrix, whose (m, n)th 

element is given by 
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where h[l, k] denotes the time-varying channel response for the 

current OFDM symbol. The variable k denotes the discrete 
sample time, and l denotes the index of the resolvable path. As 
shown in [17], h[l, k] can be explicitly represented as 

 
2π

j
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N
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for the uplink environment, where hl and vl are the complex 
amplitudes and Doppler shifts of the lth path, respectively. This 
channel model is particularly suitable for the uplink 
transmission, where the angular spread is small for non-
resolvable components of a channel tap. Therefore, the 
Doppler shifts for those non-resolvable components inside a 
channel tap are approximately the same and can thus be 
combined [18]. Similar models are also adopted in [19]–[20]. 

It should be noted that due to the fast time variation scenario, 
the channel response cannot hold unchanged during one 
OFDM transmission; thus, H is not a diagonal matrix. This is 
essentially different from the slow time variation scenario, 
where the channel matrix is diagonal [21]. 

2. Channel Estimation 

To recover the transmitted data symbols, the channel matrix 

H should be known to the receiver. With the method proposed 

in [17], h[l, k] can be regenerated by estimating the complex 

amplitudes and Doppler shifts. Let ˆ[ , ]h l k  and Ĥ  denote 

the regenerated channel response and regeneration of H, 

respectively. We then have 
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Correspondingly, the estimation error for h[l, k]  and H  can 

be given, respectively, as ˆ[ , ] [ , ] [ , ]h l k h l k h l k   and 
ˆ . H H H  Likewise, a similar relation between [ , ]h l k  

and H  can be given as 
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With the estimated channel matrix ˆ ,H  the transmitted data 

symbols can be recovered. However, due to the presence of the 

estimation error, the performance obtained is worse than that 

obtained with perfect channel estimation. Therefore, it is 

necessary to evaluate the system performance with imperfect 

channel estimation. 

III. Capacity 

In this paper, the capacity is chosen as the performance 
indicator since it is a good metric of the channel efficiency 
without having to consider implementation details. 
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1. Capacity with Perfect Channel Estimation 

Assuming that the channel estimation is perfect, the capacity 
for OFDM transmission can be given as 

 
dperf ( )

1
max {I( ; )} bits/symbol,pC

N
 d y d       (6) 

where d ( )p   denotes the probability density function of d . 

The mutual information between y and d is denoted by 

I( ; ) H( ) H( | ), y d y y d  where H() denotes the 

information entropy. Similar to the derivation for the multi-

input and multi-output (MIMO) system in [21], the mutual 

information in (6) can achieve a maximum only when d is a 

Gaussian distributed random vector. In this case, the capacity 

for OFDM transmission with perfect channel estimation is 

given as [22] 
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where det() denotes the determinant of a matrix. 
Note that the capacity representations for an OFDM system 

and MIMO system are actually the same. This is not surprising 
because both systems have the same system model in (1). 
However, the difference is that for a MIMO system, the 
elements in H can be considered as independently distributed, 
while for an OFDM system, the elements in H are actually 
correlated.  

2. Capacity with Practical Channel Estimation 

Consider now that the estimate of H is imperfect with an 

estimation error ˆ . H H H  Since Ĥ is known, the 

received signal in (1) can be rewritten as 

 ˆ , y Hd u                    (8) 

where   u w Hd  can be considered as the additive noise. 

Bearing in mind that d has zero mean, the correlation matrix 
H

uu E( )R uu  can be given as 

 2 2 H
uu w d E( ).  I  R HH           (9) 

From (9), it is observed that the data symbol also contributes  
to the overall noise power due to the presence of channel 
estimation error. 

With Ĥ  known to the receiver, the capacity for OFDM 

transmission in the presence of channel estimation error, as 

shown in (8), can be given as 

 
dprac ( )

1
max {I( ; )} bits/symbol,pC

N
 d y d      (10) 

where  

 I( ; ) H( ) H( | ) y d d d y            (11) 

denotes the mutual information for the practical channel 
estimator. 

To achieve the maximal mutual information, assume that the 
data vector d is Gaussian distributed; thus, we have [21] 

 2
2 dH( ) log det πe . Id           (12) 

Note that under this assumption, y and u are also Gaussian 
distributed since both vectors are a linear combination of 
Gaussian vectors. 

Recalling the relation in (8), we find that the transmitted data 
symbol vector d can be estimated linearly if given y and Ĥ . 
Different kinds of linear receivers can be employed for this 
purpose. In this section, we adopt the minimum-MSE (MMSE) 
receiver [13]. As shown in [22], the MMSE receiver is 
information-lossless; thus, the following equation can hold 

 MMSE
ˆI( ; ) I( ; ),d y d d               (13) 

where MMSEd̂  denotes the MMSE estimate of d. From (13),  
it is easy to obtain MMSE

ˆH( | ) H( | ),d y d d  the right-hand 
side of which can be further rewritten as MMSE

ˆH( | ) d d  

MMSEH( ),d  where MMSE MMSE
ˆ d d d  denotes the estimation 

error for the MMSE estimator. Therefore, we can deduce that  

 MMSEH( | ) H( ). d y d             (14) 

Noting that y is a Gaussian distributed vector, MMSEd̂  is 
therefore also Gaussian distributed since it is a linear 
composition of y. Correspondingly, MMSE

d  is a Gaussian 
vector as well; thus, we have 
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For an MMSE estimator, the estimation of d can be 
represented as [13]  

 H
MMSE

ˆ ,d W y                  (16) 

where  
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Therefore, the correlation matrix of estimation error MMSE
d  

can be given as 
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thus, the capacity in (10) can be derived as 
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where the second equation is due to the matrix inversion 
lemma. Note that the derived capacity expression is similar to 
the representation derived in [23] for a MIMO system. This is 
not surprising because the OFDM transmission model is 
actually identical to the MIMO model. 

From Appendix A, we find that HE( )HH   is actually a 

diagonal matrix, assuming N is large enough, which can be 

represented as  
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where 2
t  is the power of the training symbol used in [17]. 

By substituting (20) into (19), the capacity for a practical 
channel estimator can be obtained as 
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where  
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IV. Extension to ICD Estimator 

In this section, the practical capacity for OFDM transmission 
is derived considering the ICD estimator. Due to the 
information-loss characteristics of the ICD estimator [22], its 
achieving capacity will be degraded; that is, 

 ICD
ˆI( ; ) I( ; ),d y d d              (23) 

referring to (13). For the detected symbol ICDd̂  with ICD 

estimator, the mutual information in (11) can be further 
computed as 

ICD ICD

ICD

ˆ ˆI( ; ) H( ) H( | )

= H( ) H( ).
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For an ICD estimator, the detected matrix, WICD, can be 
represented as [22] 

   1
H
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And, the correlation matrix of estimation error ICD
d  can be 

given as 
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Like (15), the information entropy, ICDH( ),d  in (24) can be 

computed from (26) as 

 

H
ICD 2 ICD ICD

1
H

2 uu

H( ) log det πeE( )

ˆ ˆlog det πe .


   

    

  d d d

R H H
       (27) 

Substituting both (12) and (27) in (24), the practical capacity 
with ICD estimator can be derived as 

 ICD 2 H 1
prac 2 d uu

1 ˆ ˆlog de . tC
N

  H HR         (28) 

V. Optimal Power Allocation 

To maximize the capacity, we just consider the capacity with 
MMSE estimator in this section. 

The optimal power allocation aims to maximize the channel 
capacity, subject to 

 2 2
t d ,P                    (29) 

where P is the total power. A similar problem has been 
addressed in [17], where the optimization aims to minimize the 
MSE of the channel estimation. In this paper, our purpose is to 
maximize the capacity with given P. Considering the random 
fading in a wireless channel, the capacity in (10) is not directly 
used. Instead, we adopt the average capacity as the objective 
function, which can be defined as 
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To find the optimal power allocation ratio, which can 
maximize the average capacity above, we define 2

t ;P   
thus, 

2
d (1 ),P    where (0, 1)   is the power allocation 

ratio. Correspondingly, ε is also a function of ; that is, 
( )    and prac prac ( ).C C   Rewriting ε as a function of 

the ratio , we have 
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Bearing in mind that Hˆ ˆHH  is a Hermitian matrix, the 
eigenvalue decomposition of Hˆ ˆHH  can be expressed as 

 H Hˆ ,ˆ HH PΛP                (32) 

where P is a unitary matrix, and 0 1 1diag( , , ... , )N   Λ  

where λn is the nth eigenvalue. For a Hermitian matrix, λn is 
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real for any (0, 1),n N   and the eigenvalues have the 

following relationship: 0 1 2 .n       With the 

relation in (32), the average capacity can be derived as 
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Since log2(x) is an increasing function of x, an upper bound for 
(33) can be given as 

  prac 2 max 2 maxE log 1 ( ) log 1 ( )C             (34) 

if denoting λmax as the maximal eigenvalue, and max   

maxE( )  denotes the mean of λmax. The second inequality in 
(34) is due to Jensen’s inequality [21]. In Appendix B, it is 
shown that 
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For an individual path,  2E | |lh  depends on the channel 

delay profile. Note that max  is also a function of ; that is, 
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Therefore, the upper bound for pracC  can be written as 

 U
prac 2 max( ) log 1 ( ) ( ) .C                  (38) 

By solving the equation 
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the optimal power allocation ratio, opt, for maximizing the 

capacity upper bound can be obtained. As it will be shown, 

pracC  can achieve the maximum at opt as well. 
Substituting (31) and (37) into (39), (39) can be rewritten as 
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which after some algebraic manipulation, can be simplified as 

 2 0,a b c                   (41) 
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h3 ( 3 ),a LNP L N  2 2

h ,12b L NP and c   
2 2
w h6 ( ).LN LP   Equation (41) can be easily solved using 

the well-known root formula, and the solution is given as 
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where opt is a positive value. 

VI. Numerical Results 

Numerical results are shown in this section to demonstrate 

the efficiency of the derived power allocation ratio. An OFDM 

transmission consisting of N = 64 subcarriers is investigated in 

the numerical analysis. For the wireless channel, L = 3 paths 

are considered, with power delay profile as 2E(| | ) 1lh   for  

l = 0, 1, 2 and Doppler shifts as 0.2, 0.1, and 0.1. The algorithm 

proposed in [17] is adopted for estimating the channel response. 

The SNR is defined as 2
wSNR / .P   

The numerical results and theoretical upper bounds are 

shown in Fig. 1. It is observed that the capacity, as well as the 

upper bounds, are convex functions of . Both the numerical 

results and the upper bounds can achieve their respective 

maximums at opt 0.15,   which coincides with our 

theoretical prediction with (42) for N = 64, L = 3, 2
h 1,   and 

P = 1. 
The capacities for different power allocation ratios are 

presented in Fig. 2. For  = 0.15, the theoretical upper bound 
 

 

Fig. 1. Capacity vs. power allocation ratio for SNR = 10 dB and 
SNR = 30 dB, respectively. Theoretical upper bounds are 
also presented for comparison. 
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Fig. 2. Average capacities for  = 0.15, 0.5, 0.85, respectively in 
terms of SNR. The upper bound and average capacity 
with perfect channel estimation are also presented. 
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and capacity with perfect channel estimation (that is, (7)) are 

also shown for comparison. As it can be seen from Fig. 2, the 

performances for different ’s are significantly different. For  
 = 0.85, the worst performance can be observed. On the other 

hand, a better performance can be obtained by adopting  = 0.5. 

This can be explained by referring to Fig. 1. As seen in Fig. 1, 
 = 0.85 is relatively far from the arrest point ( 0.15  ) 

compared to  = 0.5. This accounts for the different 

performances we observed since pracC  is a convex function of 
. Also, from Fig. 2, we can observe a 1 dB performance gap 

between pracC  and perfC  when  = 0.15. This suggests that 

the ideal capacity with perfect channel estimation can be 
almost achieved by adopting the derived optimal power 

allocation ratio. Meanwhile, a 2.5 dB performance gap 

between pracC  with  = 0.15 and the theoretical upper bound 
can be observed due to the inequality in (34). 

In Fig. 3, the cumulative distribution functions (CDFs) of the 
capacities are also shown. Three cases, where  takes 0.15, 0.5, 
and 0.85, are investigated in Fig. 3. Similar to the situation in 
Fig. 2, an obvious performance improvement can be observed 
by adopting the optimal power allocation ratio, and the 
performance gets worse as  gets further away from the arrest 
point. Also, we can find that the probability of achieving a 
capacity of more than 2.5 bits/symbol is 0.9 at SNR = 10 dB. 
At SNR = 30 dB, the capacity can achieve more than      
8.5 bits/symbol at a probability of 0.9. For both situations, the 
capacity achieved using optimal power allocation is very close 
to the capacity with perfect channel estimation, demonstrating 
the efficiency of the proposed power allocation strategy. 

The comparison of average capacities for the proposed 
algorithms in [15]–[17] is shown in Fig. 4. The average capacity 

 

Fig. 3. CDFs for SNR = 10 dB and SNR = 30 dB, respectively. 
CDF of capacity with perfect channel estimation are also 
presented. 
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Fig. 4. Comparison of average capacities for the proposed 
algorithm and algorithms in [15]–[17]. Orders of the 
Taylor expansions in [15] and [16] are represented by P
and Q, respectively. 
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of the proposed algorithm with ICD estimator is also presented 
for comparison. As shown in Fig. 4, due to the noise 
enhancement issue and information loss characteristics, the 
ICD estimator leads to a worse performance at lower SNR, 
compared with the MMSE estimator. With the SNR increasing, 
the capacity with ICD estimator approached the capacity of the 
MMSE estimator. Note that the training symbol and data 
symbols are with equal power allocation for the algorithms in 
[15] and [16]. For the algorithm in [17], the optimal power 
allocation is based on minimizing the MSE of the channel 
estimation. As it can be seen from Fig. 4, our proposed 
algorithm outperforms all the algorithms in [15]–[17]. Even at 
high SNR, there exists a larger gap between the proposed 
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Fig. 5. Average MSEs for proposed algorithm and algorithms in 
[15]–[17] at different SNRs. 
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algorithm and that in [15], which can be interpreted later by the 
average MSE results in Fig. 5.  

The average MSEs for the different algorithms in [15]–[17] 
and this paper are compared in Fig. 5. Because less power was 
allocated for the training symbol, our proposed algorithm 
presents worse MSE performance; however, it achieves the 
best capacity, as shown in Fig. 4. To minimize the MSE of the 
channel estimation, the algorithm in [17] allocates more power 
to the training symbol. Nevertheless, this scheme is not 
efficient in terms of capacity performance, as can be seen from 
Fig. 4. The algorithm in [16] has almost the same MSE as the 
algorithm in [17]. The algorithm in [15] obtains as superior an 
MSE performance as those in [16] and [17] at low SNR; 
however, at high SNR, it does not achieve good MSE 
performance and further contributes to the poor capacity 
performance, as shown in Fig. 4. This results from the large 
intrinsic estimation error of the algorithm in [15]. 

VII. Conclusion 

In this paper, the optimal power allocation for channel 
estimation of OFDM uplinks in time-varying channels has 
been investigated. As an extension of the research of [17], this 
paper intends to derive the optimal power allocation ratio in 
terms of maximizing the capacity, instead of minimizing the 
MSE of the channel estimation, as it has been done in [17]. 
Based on the derived upper bound expression for the capacity 
with imperfect channel estimation, the optimal power 
allocation strategy can be easily obtained by reasonably 
allocating the total power between the training symbol and 
data symbols. The numerical results are also shown, 
demonstrating the efficiency of the derived power allocation 
strategy. 

Appendix A: Derivation of (20) 

Recalling the representation of H  in (5), it actually can be 
written as 
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where 
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With the definition of ,H the (m, n)th element of E( )  HHH  

can be given as 
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where H
, .k t k tM Q Q  The term T *

,E( )k k t t
 h M h  in (A.6) can 

be rewritten as 
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where 
1 2

, ( , )k t l l
  M  denotes the (l1, l2)th element of ,k tM . 

From the derivation in [17], we can conclude that the 
estimation errors for different paths are independent; that is, 
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Therefore, the equation in (A.7) can simplified as 
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where  ,diag k tM  denotes a diagonal matrix composed of 

the elements on the diagonal line of ,k tM . Recalling that 
H

,k t k tM Q Q  and the definition of Qk in (A.5), we can obtain 
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that 
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From (A.10), we can observe that  ,diag k tM  is a zero 

matrix when k t  and that  ,diag k t N IM  when k = t. 

Therefore, the relation in (A.9) can be written as 
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With the relation in (A.11), the (m, n)th element of HE( ) HH  

in (A.6) can be simplified as 
2π( )1 jT * T *

0

2π( )1 1j 2

0 0

1
E( ) E( )

1
E(| [ , ] | )

 

.

n m kN
N

m n k k
k

n m kN L
N

k l

e
N

e h l k
N





 

 







 

  



H H h h

    (A.12) 

Following the derivation of MSE  in [17], it is easy to 
obtain that 
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and we therefore have 
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Further derivation of (A.14) depends on the relation between m 
and n. 

A. m n  

For this situation, (A.14) can be rewritten as 
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Since m n , the first summarization in (A.15) is equal to 
zero. Using the relation [24] 
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we find that the numerator of the second summarization is a 
linear function of N. Considering that the denominator for the 
second summarization is a quadratic function of N, the second 
term is also zero when N is large enough. Similarly, bearing in 
mind the following relation [24],  
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and the fact that the denominator for the third summarization 

term is a cubic function of N, the third summarization term is 

equal to zero as well for large enough N. Since all the three 

terms are zeros, we can conclude that T *E( ) 0m n  H H  given 

m n . 

B. m n  

Given m = n, (A.14) can be rewritten as 
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which, after some algebra, can be simplified as 
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for large enough N. 
In view of the two situations above, we can finally obtain (20). 

Appendix B 

As shown in [17], it is easy to derive that the estimates of vl 
and hl are both unbiased for large enough N. Therefore, we can 
also ascertain that the estimations of h[l, k] are unbiased as 
well; that is, 

E( [ , ]) 0.h l k                  (B.1) 

Bearing in mind (5), the following relation can be obtained 
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which means the estimations of H are also unbiased; that is, 

  E( ) , 0H                   (B.3) 

where 0 is an N × N zero matrix. In view of the conclusion 
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above, we can obtain 
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In Appendix A, we have derived the expression of 
HE( ). HH  Recalling the MSE representation in [17] for large 

enough M, (20) can be rewritten as 
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where MSE  denotes the average MSE. Since the definition 

of MSE  is given as 
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for large N, (B.5) can be further rewritten as 

 
1 1

H 2

0 0

1
E( ) E(| [ , ] | ) .

L N

l k

h l k
N

 

 

  I HH       (B.7) 

Recalling the similarity between the definition of H and ,H  

it is easy to derive that 
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where 2
h  is defined in (36). 

Since HE( )HH  and HE( ) HH  are both diagonal 

matrices, we have 
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For (B.9), it is easy to observe that all the eigenvalues of 
Hˆ ˆE( )HH  are equal; thus, we have 
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