사람 치주인대줄기세포의 교원질 형성에 대한 법랑기질 유도체의 영향

The Effect of Enamel Matrix Derivatives on the Collagen Formation by Human Periodontal Ligament Stem Cells both in vitro and in vivo Analysis

  • Cha, Jae-Kook (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Oh, Sang-Yeob (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Park, Jung-Chul (Department of Periodontology, College of Dentistry, Dankook University) ;
  • Kim, Dong-Jun (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Park, So-Yon (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Cho, Kyoo-Sung (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Kim, Chang-Sung (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
  • 투고 : 2015.08.05
  • 심사 : 2015.10.15
  • 발행 : 2015.12.01

초록

목적: 법랑기질 유도체(EMD)가 사람 치주인대 줄기세포(hPDLSC)의 조직 형성능에 미치는 영향을 in vitro와 in vivo 분석 모델을 이용해 평가한다. 재료 및 방법: hPDLSC를 배양하여 운반체와 함께 면역 억제된 쥐 등에 이식하였다; (1)대조군: EMD 처치하지 않은 운반체에 심어진 hPDLSC군 ($EMD^-/hPDLSC^+$), (2)실험군: EMD 처치한 운반체에 심어진 hPDLSC군 ($EMD^+/hPDLSC^+$). 각 군당 5마리씩 시행하고 8주 후 희생하였다. 조직학적, 조직계측학적 분석을 통해 형성된 백악질의 면적과 백악세포의 수 그리고 샤피 섬유의 수를 계측하였으며 면역조직화학적 분석을 통해 백악질과 교원질 형성을 평가하였다. 또한 in vitro에서 hPDLSC의 수용성 교원질과 glycosaminoglycan 형성에 대한 EMD의 효과를 분석하였다. 결과: 조직학적 분석에서 교원질성 치주 인대 조직이 실험군에서 현저하게 많이 생성된 것을 관찰할 수 있었다. 형성된 백악질의 면적과 백악세포의 수는 군 간 차이가 없었으나, 새롭게 형성된 샤피 섬유의 수는 실험군에서 대조군보다 유의하게 많았다(p<0.05). 교원질 형성에 대한 면역조직 화학적 분석 결과, 실험군에서 I, III형 교원질과 hydroxyproline의 발현이 높았다. 또한 in vitro에서 hPDLSC에 의한 수용성 교원질과 glycosaminoglycan 형성이 EMD의 농도에 비례하여 증가하였다 (p<0.05). 결론: EMD는 hPDLSC에 의한 샤피 섬유 및 교원질 생성을 증가시키고, 이는 새로운 백악질의 기능적 부착과 치주조직 재생에 중요한 역할을 한다.

키워드

참고문헌

  1. Hammarstrom L. Enamel matrix, cementum development and regeneration. J Clin Periodontol 1997;24(9 Pt 2):658-668 https://doi.org/10.1111/j.1600-051X.1997.tb00247.x
  2. Heijl L, Heden G, Svardstrom G, Ostgren A. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol 1997;24(9 Pt 2):705-714 https://doi.org/10.1111/j.1600-051X.1997.tb00253.x
  3. Gestrelius S, Lyngstadaas SP, Hammarstrom L. Emdogain--periodontal regeneration based on biomimicry. Clin Oral Investig 2000;4(2):120-125 https://doi.org/10.1007/s007840050127
  4. Donos N, Sculean A, Glavind L, et al. Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. J Clin Periodontol 2003;30(12):1061-1068 https://doi.org/10.1046/j.0303-6979.2003.00429.x
  5. Casati MZ, Sallum EA, Nociti FH, Jr., et al. Enamel matrix derivative and bone healing after guided bone regeneration in dehiscence-type defects around implants. A histomorphometric study in dogs. J Periodontol 2002;73(7):789-796 https://doi.org/10.1902/jop.2002.73.7.789
  6. Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 1997;24(9 Pt 2):669-677 https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  7. Esposito M, Grusovin MG, Papanikolaou N, et al. Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review. Eur J Oral Implantol 2009;2(4):247-266
  8. Lyngstadaas SP, Lundberg E, Ekdahl H, et al. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. Journal of clinical periodontology 2001;28(2):181-188 https://doi.org/10.1034/j.1600-051x.2001.028002181.x
  9. Warotayanont R, Zhu D, Snead ML, Zhou Y. Leucine-rich amelogenin peptide induces osteogenesis in mouse embryonic stem cells. Biochemical and biophysical research communications 2008;367(1):1-6 https://doi.org/10.1016/j.bbrc.2007.12.048
  10. He J, Jiang J, Safavi KE, et al. Emdogain promotes osteoblast proliferation and differentiation and stimulates osteoprotegerin expression. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2004;97(2):239-245 https://doi.org/10.1016/j.tripleo.2003.10.005
  11. Kawase T, Okuda K, Yoshie H, Burns DM. Cytostatic action of enamel matrix derivative (EMDOGAIN) on human oral squamous cell carcinoma-derived SCC25 epithelial cells. J Periodontal Res 2000;35(5):291-300 https://doi.org/10.1034/j.1600-0765.2000.035005291.x
  12. Gestrelius S, Andersson C, Lidstrom D, et al. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol 1997;24(9 Pt 2):685-692 https://doi.org/10.1111/j.1600-051X.1997.tb00250.x
  13. Kim YT, Park JC, Choi SH, et al. The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model. J Periodontal Res 2012;47(4):514-524 https://doi.org/10.1111/j.1600-0765.2011.01463.x
  14. Seo B-M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 2004;364(9429):149-155 https://doi.org/10.1016/S0140-6736(04)16627-0
  15. Jung IH, Park JC, Kim JC, et al. Novel application of human periodontal ligament stem cells and water-soluble chitin for collagen tissue regeneration: in vitro and in vivo investigations. Tissue Eng Part A 2012;18(5-6):643-653 https://doi.org/10.1089/ten.tea.2011.0164
  16. Park JC, Kim JM, Jung IH, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol 2011;38(8):721-731 https://doi.org/10.1111/j.1600-051X.2011.01716.x
  17. Bosshardt DD, Selvig KA. Dental cementum: the dynamic tissue covering of the root. Periodontol 2000 1997;13:41-75 https://doi.org/10.1111/j.1600-0757.1997.tb00095.x
  18. Houshmand B, Behnia H, Khoshzaban A, et al. Osteoblastic differentiation of human stem cells derived from bone marrow and periodontal ligament under the effect of enamel matrix derivative and transforming growth factor-beta. Int J Oral Maxillofac Implants 2013;28(6):e440-450 https://doi.org/10.11607/jomi.te24
  19. Haase HR, Bartold PM. Enamel matrix derivative induces matrix synthesis by cultured human periodontal fibroblast cells. J Periodontol 2001;72(3):341-348 https://doi.org/10.1902/jop.2001.72.3.341
  20. Tanimoto K, Huang YC, Tanne Y, et al. Amelogenin enhances the osteogenic differentiation of mesenchymal stem cells derived from bone marrow. Cells Tissues Organs 2012;196(5):411-419 https://doi.org/10.1159/000335912
  21. Jue SS, Lee WY, Kwon YD, et al. The effects of enamel matrix derivative on the proliferation and differentiation of human mesenchymal stem cells. Clin Oral Implants Res 2010;21(7):741-746 https://doi.org/10.1111/j.1600-0501.2009.01901.x
  22. Park JC, Wikesjo UM, Koo KT, et al. Maturation of alveolar bone following implantation of an rhGDF-5/PLGA composite into 1-wall intra-bony defects in dogs: 24-week histometric observations. J Clin Periodontol 2012;39(6):565-573 https://doi.org/10.1111/j.1600-051X.2012.01868.x
  23. Park JC, Kim JC, Kim YT, et al. Acquisition of human alveolar bone-derived stromal cells using minimally irrigated implant osteotomy: in vitro and in vivo evaluations. J Clin Periodontol 2012;39(5):495-505 https://doi.org/10.1111/j.1600-051X.2012.01865.x
  24. Park JC, So SS, Jung IH, et al. Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res 2011;46(6):682-690 https://doi.org/10.1111/j.1600-0765.2011.01390.x
  25. Park JC, Lee JB, Daculsi G, et al. Novel analysis model for implant osseointegration using ectopic bone formation via the recombinant human bone morphogenetic protein-2/macroporous biphasic calcium phosphate block system in rats: a proofof-concept study. J Periodontal Implant Sci 2012;42(4):136-143 https://doi.org/10.5051/jpis.2012.42.4.136
  26. Rohanizadeh R, Trecant-Viana M, Daculsi G. Ultrastructural study of apatite precipitation in implanted calcium phosphate ceramic: influence of the implantation site. Calcif Tissue Int 1999;64(5):430-436 https://doi.org/10.1007/PL00005825
  27. Miramond T, Corre P, Borget P, et al. Osteoinduction of biphasic calcium phosphate scaffolds in a nude mouse model. J Biomater Appl 2014;29(4):595-604 https://doi.org/10.1177/0885328214537859
  28. Cattaneo V, Rota C, Silvestri M, et al. Effect of enamel matrix derivative on human periodontal fibroblasts: proliferation, morphology and root surface colonization. An in vitro study. J Periodontal Res 2003;38(6):568-574 https://doi.org/10.1034/j.1600-0765.2003.00690.x
  29. Palioto DB, Coletta RD, Graner E, et al. The influence of enamel matrix derivative associated with insulin-like growth factor-I on periodontal ligament fibroblasts. J Periodontol 2004;75(4):498-504 https://doi.org/10.1902/jop.2004.75.4.498
  30. Larjava H, Hakkinen L, Rahemtulla F. A biochemical analysis of human periodontal tissue proteoglycans. Biochem. J 1992;284:267-274 https://doi.org/10.1042/bj2840267
  31. Kirkham J, Brookes S, Shore R, et al. The effect of glycosylaminoglycans on the mineralization of sheep periodontal ligament in vitro. Connective tissue research 1995;33(1-3):23-29 https://doi.org/10.3109/03008209509016977
  32. Bosshardt DD. Biological mediators and periodontal regeneration: a review of enamel matrix proteins at the cellular and molecular levels. J Clin Periodontol 2008;35(8 Suppl):87-105 https://doi.org/10.1111/j.1600-051X.2008.01264.x
  33. Nokhbehsaim M, Winter J, Rath B, et al. Effects of enamel matrix derivative on periodontal wound healing in an inflammatory environment in vitro. J Clin Periodontol 2011;38(5):479-490 https://doi.org/10.1111/j.1600-051X.2010.01696.x
  34. Hammarstrom L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. Journal of Clinical Periodontology 1997;24(9 Pt 2):669 https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  35. Hammarstrom L. The role of enamel matrix proteins in the development of cementum and periodontal tissues. Ciba. Found. Symp, 1997:246-255.
  36. Bosshardt DD, Sculean A, Donos N, Lang NP. Pattern of mineralization after regenerative periodontal therapy with enamel matrix proteins. European journal of oral sciences 2006;114(s1):225-231 https://doi.org/10.1111/j.1600-0722.2006.00300.x
  37. Sculean A, Donos N, Windisch P, et al. Healing of human intrabony defects following treatment with enamel matrix proteins or guided tissue regeneration. Journal of Periodontal Research 1999;34(6):310-322 https://doi.org/10.1111/j.1600-0765.1999.tb02259.x
  38. Bosshardt DD, Sculean A, Windisch P, et al. Effects of enamel matrix proteins on tissue formation along the roots of human teeth. Journal of periodontal research 2005;40(2):158-167 https://doi.org/10.1111/j.1600-0765.2005.00785.x