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Abstract 
 

This paper is concerned with the problem of joint resource allocation and user-pairing in 
virtual MIMO SC-FDMA systems to improve service quality of experience (QoE).  
No-reference logarithmic model is introduced to quantify service experience for each user and 
the objective is to maximize sum of all user’s mean of score (MOS). We firstly formulate the 
optimal problem into an S-dimensional (S-D) assignment problem. Then, to solve this 
problem, the modified Lagrangian relaxation algorithm is deduced to obtain the suboptimal 
result of joint user-paring and subchannel allocation. The merits of this solution are as follows. 
First, the gap between its results and the global optimal one can be quantified and controlled 
by balancing the complexity and accuracy, which merit the other suboptimal algorithms do not 
have. Secondly, it has the polynomial computational complexity and the worst case 
complexity is O(3LN3), where L is the maximum iteration time and N is the number of 
subchannels. Simulations also prove that our proposed algorithm can effectively improve 
quality of experience and the gap between our proposed and the optimal algorithms can be 
controlled below 8%. 
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1. Introduction 

In the Third Generation Partnership Project Long Term Evolution (3GPP-LTE) standard, the 
proposed uplink transmitting scheme is Single Carrier Frequency Division Multiplexing 
Address (SC-FDMA) [1]. Multi-Input Multi-Output (MIMO) technique, which increases the 
spectral efficiency by using multiple transmitting and receiving antennas, has also been widely 
applied in LTE system. Nevertheless, due to the high hardware complexity and cost, 
implementation of multiple transmitting antennas sometimes cannot be available, especially in 
a small hand-set. Fortunately, LTE spectral efficiency can also be increased by virtual 
multi-input multi-output (VMIMO) technique [2]. In the VMIMO system, two or more users 
can be served on the same radio time-frequency resource and multiuser equalizer is applied to 
separate the signal of each user. Therefore, VMIMO combined with SC-FDMA has been 
discussed in the LTE uplink system. 

The critical issue in VMIMO SC-FDMA system is how to jointly group VMIMO user pairs 
and allocate radio resource to each pair. However, this problem is usually very complex to 
solve for the following reasons. First, the allocated frequency resource to each user pair should 
be adjacent for SC-FDMA technique [3]. Traditional resource allocation algorithms based on 
individual subcarrier in OFDMA systems should not be applied any more. Secondly, since it is 
impossible in reality for all users having orthogonal channels, the system performance 
improvement by pairing the former users may be immediately degraded for severe co-channel 
interference between the latter paired users. As a result, joint user-pairing and resource 
allocation algorithms should be considered. On the other hand, to achieve global optimization 
is very complex, especially when either user number or subchannel number is large.  
  In order to solve the above problem, there are few works focused on the joint problem in 
VMIMO SC-FDMA systems [4-6]. A greedy heuristic proportional fair (PF) scheduling 
algorithm is proposed in [4]. In this algorithm, user pairing is made randomly and each 
resource block (RB) is allocated by the first chosen user of each pair. Therefore, system 
performance cannot be global optimal. The combination of Hungarian and binary switching 
algorithms is presented in [5]. Hungarian algorithm is applied to complete the initial 
user-pairing and resource allocation and binary switching algorithm is used to adjust the 
user-pairing. However, each user pair is allocated the same number of RBs and different 
requirements of quality of service (QoS) among users are ignored. Later, a joint user-pairing 
and resource allocation algorithm based on branch-and-bound search (BBS) is presented in [6], 
which can achieve the global optimal solution. And some suboptimal algorithms are also 
proposed by exploiting the characteristic of BBS. However, the computational complexity of 
all the algorithms in [6] are exponential and will be very high with the increased number of 
users and RBs. Furthermore, the objectives of all the above aforementioned algorithms are not 
to improve the quality of experience (QoE) for different traffics. In the other hand, as we all 
know, improving QoE of end-users become very important for providers to maintain and 
increase their customs [7]. Also, the QoE-driven resource allocation schemes, which enhance 
the performance of a network from the user perspective, are drawing more and more attentions 
in the recent years [8-14]. How to improve the minimum MOS in the OFDMA systems was 
discussed in [8] and three different classes of data flows: video streamers, audio streamers and 
best effort were considered. [9] and [10] respectively discussed how to guarantee QoE of web 
browser and video in the OFDMA systems. In [11], energy efficiency was added as a factor to 
balance QoE for each service in the OFDM systems. A general framework for improving QoE 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 10, October 2015                                     3833 

in LTE downlink systems presented and system parameters of each protocol layer in the 
causation of QoE were also discussed in detail [12]. The joint power and resource allocation in 
OFDMA systems was discussed in [13] and two different QoE objectives were applied. 
However, all of these works are focused on the improving of QoE in LTE downlink systems. 
[14] is one of the representative studies on QoE improvement of the LTE uplink systems and it 
mainly focused on the carrier aggregation systems. So far as we know, there is no work on a 
QoE-driven joint user pairing and resource allocation scheme in Virtual MIMO SC-FDMA 
Systems 

Therefore, in this paper, we dedicated to solve the joint user-pairing and resource allocation 
problem with low computational complexity while maximizing the system QoE. Compared to 
the previous works, our contributions are as follows. First, the no-reference logarithmic QoE 
model is described to give quantitative metrics for service experience and the mathematical 
optimal objective can be achieved by this model. Secondly, the joint resource allocation and  
user-pairing problem is converted into an S-dimensional (S-D) assignment problem and the 
mathematical formulation for the joint optimal problem is also presented. Thirdly, the 
modified Lagrangian relaxation algorithm is deduced to solve the S-D algorithm. Compared 
with BBS algorithm in [6], it can obtain the solutions with polynomial complexity. Compared 
with other suboptimal algorithms, it can control the gap between the suboptimal solution and 
the global optimal solution.  

 The rest of this paper is organized as follows. In section 2, system model is detailed. And 
then, how to convert the joint user-pairing and resource allocation problem into a S-D 
assignment problem is described and the mathematical expressions for this problem is 
presented in section 3. The Lagrangian relaxation algorithm to solve the S-D assignment 
problem is presented in section 4. In order to prove the performance of our proposed algorithm, 
simulation results in Matlab are shown in section 5. Finally, some conclusions about our 
algorithm are given in section 6. 

2. System Model 
We investigate an uplink virtual MIMO SC-FDMA system in a single cell scenario. The 
transmitter and receiver structures are shown in Fig. 1. The base station has Nr receiving 
antennas and each user has one transmitting antenna. The transmission bandwidth B is 

constituted by KN orthogonal subcarriers. And all subcarriers are divided into N subchannels indexed 
by { }= 1,2, ,NN and each subchannel includes K subcarriers. There are M users belonging to 
the set of  { }1,2, ,M= M = . U(U≤Nr) users are chosen to form one virtual MIMO user pair and 
simultaneously transmit their data on the same time-frequency resources.  

At the receiver, SC-FDMA signals are firstly demodulated and then MMSE detection is 
applied to separate each user’s data. Channel side information (CSI) is estimated by channel 
estimation algorithm. Then, CSI is sent to the link level performance model and be applied to 
evaluate the achievable throughput for each application in a certain resource allocation 
scenario. In this paper, the achievable throughput defined as the number of bits successively 
transmitted. Since QoE is the subjective experience, it is necessary to introduce a method to 
assess it with mathematical expression and hence the no-reference objective QoE model is 
introduced to convert the achievable throughput to QoE for each application. Finally, the 
QoE-driven joint user pairing and subchannel allocation model gives out how to group user 
pair and allocate each subchannel to these user pair. Since the uplink scheme is SC-FDMA, 
subchannel allocation for each user pair should obey the follow restrictions. First, only one 
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user pair can occupy a certain subchannel. Secondly, all subchannels allocated to each user 
pair should be consecutive.  

In order to make the statement more clear, the link level performance model and the 
no-reference quality of experience (QoE) model are elaborated in the following. 
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Fig. 1. The proposed system of virtual MIMO SC-FDMA 

 

2.1 Link Level Performance Model 
Assuming that N0 consecutive subchannels are allocated to the selected user pair. For 
convenience, the indexes of user pairs are omitted in the following text.  If the first allocated 
subchannel index is n0, the receiving signal vector for the selected user pair on the subcarrier 

( ) ( )( )0 0 01 1, 1k k n K n N K∈ − × + + − ×    can be presented as [6],  
 

k k k k= +y H Px n                                                         (1) 
 
where kx  is the 1U ×  transmitting signal vector, 1 2( , , )Udiag p p p=P  is a diagonal matrix and 
each diagonal elements denotes the transmitting power of each user, kH is the 

rN U× equivalent channel response matrix, kn  is the 1rN × additive white Gaussian noise 
vector and each element with zero mean and 2

nσ  variance. 
In the analysis of [6], the post-processing SINR uγ for user u(u=1, 2,…,U) can be described 

as 
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where ,u kΓ  is the post-processing SINR for user u on subcarrier k and can be presented as 
follows, 
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Here, [A]u,u means the uth diagonal element of matrix A.  
The link level performance model proposed in [21] is introduced to evaluate the spectrum 

efficiency. In this paper, the spectrum efficiency is the number of data bits that can be 
successfully transmitted per hertz (HZ). The effectives of both adaptive modulation and 
coding and HARQ on the spectrum efficiency in LTE uplink systems are also considered. For 
convenience, the user index “u” is omitted in the following texts of this subsection and the 
spectrum efficiency is presented as follows, 
 

            ( )
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                                          (4) 

 

where γ  represents the post-processing SINR for each user and can be obtained by Eq.(2). 
Parameter α  is defined as 0.4 in [15] for LTE uplink sytem. minγ , maxγ and maxSE  are 
respectively -10dB, 15dB and 2bps/HZ. Therefore, the achievable throughput R can be 
deduced by the spectrum efficiency and described as, 
 

0BNR SE
N

=                                                                              (5) 

 

2.2 The No-Reference Objective QoE Model 
QoE is defined as the overall acceptability of an application or a service [16]. It is a subjective 
measurement of end-to-end performance from the point of view of the end user. QoE can be 
quantified in terms of Mean Opinion Score (MOS) including five levels: Excellent, Good, Fair, 
Poor and Bad. However, subjective assessment process that asks people to mark the score is 
very complex and time-consuming. Some researchers have proposed objective QoE 
estimation methods. The objective QoE estimation methods include three categories, full 
reference (FR), reduced reference (RR) and no reference (NR) [17]. Since FR and RR methods 
need to know all or some parts of source-coded information at the user experiment, it is not 
practical to use them in the band-limited wireless networks. Therefore, in this paper, NR 
method is applied to estimate QoE of different applications from some available quality of 
service (QoS) parameters.  

Some generic relationships between QoS and QoE have been investigated. Two most 
famous ones are exponent and logarithm [18, 19]. The logarithmic mapping between QoS and 
QoE is found by using either subjective test ([7], [18]) or the theories of economic and 
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psychology [19]. Furthermore, the mathematical logarithmic relationship is simple and easily 
tractable. In this paper, we choose logarithmic function to describe relationship of QoS and 
QoE for three common categories of services, such as voice, video and best effort service.  

For different applications, many lower or radio link layer QoS parameters, e.g., rate or 
throughput, power, bandwidth, packet loss rate, ect, can have impact on QoE. It is 
demonstrated that QoE can be described as a function of transmission data rate and packet loss 
rate [20] and QoE is measured by MOS in these works. When all packets are transmitted 
successfully, the transmission data is actually the achievable throughput described in 
subsection A. In other words, if packet error rate is equal to zero, it is obviously that QoE only 
has relationship with the achievable throughput described in subsection A.  Therefore, MOS 
for different applications can be simplified as a function of achievable throughput as below 
[20], 

  

        

( ) ( )
1.0

1.0 4.5

4.5

1.0, < ;
MOS = ln , ;

4.5, < .

R R
R a bR R R R

R R


 ≤ ≤



                                            (6) 

 
where R is the achievable throughput for each application and can be obtained by Eq.(5). R1.0 is 
the minimum achievable throughput corresponding to QoE is bad and MOS is equal to 1. 
While R4.5 corresponds to the maximum achievable throughput if QoE for application is 
excellent and MOS is assigned by 4.5. Any achievable throughput smaller than R1.0 may result 
in bad user experience and the achievable throughput larger than R4.5 cannot further improve 
user experience. Values of R1.0 and R4.5 have relationships with application categories and can 
be determined by empirical test in real systems. However, how to obtain the values for R1.0 and 
R4.5 is not our focus in this paper and some previous works can be found in [20]. a and b are 
coefficients and specific by different applications since R1.0 and R4.5 are totally different among 
applications.  Once R1.0 and R4.5 are set, we can obtain a and b by the following equations, 
 

4.5 1.0
1 1ln ;

3.5 15.75
a R R= +                                                       (7) 

 
1 1

3.5 15.75
4.5 1.0b R R= ⋅                                                                (8) 

 
It is obviously that achievable throughput larger than R4.5 or smaller than R1.0 has no 

contributions to improve user experience and this will result in the QoE-driven resource 
allocation algorithms are different from the conditional QoS-driven ones, i.e. 
throughput-driven algorithm.  

3. Problem Statement 
In this section, the problem of QoE-driven user-paring and subchannel allocation are jointly 
considered. The motivation of converting the joint problem to an S-D assignment one is firstly 
declared. Then, we introduce how to convert the joint user-paring and subchannel allocation 
problem into an S-D assignment problem. Finally, the mathematical expressions for the 
optimal joint user-pairing and subchannel allocation problem is given. 
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3.1 Motivation for problem conversion 
The joint problem of user-pairing and subchannel allocation has been elaborated in [6] and is 
converted into an integral programming problem. Then, the optimal solution is found by brand 
and bound algorithm (B&B). By changing the optimal cost function, the mathematical 
expression in [6] can also been applied with QoE-driven problem. Actually, the QoE-driven 
B&B algorithm is also realized in this paper. Although the details are not presented for it is not 
our focus, simulations and performance analyses of this algorithm are made in section V. 
However, time and space complexities of the B&B algorithm to solve the integral 
programming problem are exponential and impractical for LTE uplink systems. Besides, some 
suboptimal algorithms are proposed in [6] and other previous works. The cost accuracies of 
these algorithms and the optimal one cannot be quantified and hence it is hard to evaluate the 
benefits of these algorithms. Furthermore, user pairing and subchannel allocation in all the 
suboptimal algorithms are firstly made according to throughput or SNR on one subchannel. 
Nevertheless, it cannot be applied in QoE-driven algorithms since MOS is the final result after 
user-pairing and subchannel allocation. Take an easy case for example. User pair with the 
largest throughput may not have the largest MOS because for undemanding users too much 
throughput will result in resource waste for the system MOS performance. Therefore, it is 
necessary to find an algorithm obtaining the final result of joint user-pairing and subchannel 
allocation. And, it will be better if the time and space complexity of this suboptimal algorithm 
can be polynomial and its accuracy can be quantifiable.     

Fortunately, the relaxation Lagrangian algorithm to solve the S-D assignment algorithm can 
satisfied our requirements. The S-D assignment problem is firstly described in [21] to solve 
mutlisensor-multitarget problem. The objective is to divide mutlisensors into groups and each 
group constitutes S sensors to finish a multitarget surveillance. In other words, sensors are 
firstly paired and then each surveying task is chosen for each pair.  Obviously, our joint 
user-pairing and subchannel allocation problem is the same as the mutlisensor-multitarget 
problem and can be translated as firstly users are paired and then the subchannel allocation 
tasks are chosen for each pair. Once, the joint user-pairing and subchannel allocation problem 
is converted into an S-D assignment problem, we can obtain a suboptimal solution with 
quantifiable accuracy in polynomial time and space complexities. 

3.2 S-D assignment problem description for joint user-pairing and subchannel 
allocation problem 
In order to convert the joint problem into an S-D assignment problem, the subchannel 
allocation pattern matrix for each user pair is introduced from [2]. If there are 3 subchannels in 
the system, the subchannel allocation pattern matrix A can be represented as, 
 

           
0 1 0 0 1 0 1

= 0 0 1 0 1 1 1
0 0 0 1 0 1 1

 
 
 
  

A                                                           (9) 

 
here, each columns of the matrix represents one possible subchannel allocation pattern for 
each user pair and there are total ( )2C= + +2 2N N  columns. In the following, the meaning of 
the cth subchannel allocation pattern is selected is that the cth column is chosen. Then, the 
joint user-pairing and subchannel allocation problem can be converted into firstly choose a 
pair for each user and then each pair choose one column of matrix A.  
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 Fig. 2. 3-D assignment problem for jointly user pairing and subchannel allocation when 2uN =  

 
In order to make the above clarification more clear, we would like to give an example in the 

case of U=2，M=6，N=3. The joint user-pairing and subchannel allocation problem is to 
divide 6 users into 3 groups and allocate 3 subchannels to 3 groups. One possible solution for 
user pairing set is {(1,2) ,(3,4) ,(5,6)}and subchannel allocation pattern set is {(1, 0, 0) ,(0, 1, 
0) ,(0, 0, 1)}. Here, (1, 2) and (1, 0, 0) respectively presents user 1 and 2 are paired and 
subchannel 1 is allocated to them. The outcome can be presented in Fig. 2. The x-axis and 
y-axis respectively presents the user index and z-axis presents the pattern index. The circles in 
Fig. 2 present the outcome of joint user-pairing and subchannel allocation. From Fig. 2, it is 
obviously that the joint user-pairing and subchannel allocation problem can be converted into 
a 3-D assignment problem if U= 2. As an alternative, if U>2, the joint user-pairing and 
subchannel allocation problem can be converted into an S-D assignment problem, where S 
equals to U+1. 

3.3 Mathematical expressions for QoE-driven joint user-pairing and 
subchannel allocation problem 
In this paper, we would like to concentrate on the condition that two users are grouped into one 
user pair. However, the expressions and following solutions can be easily extended to the case 
of U >2.  

Our objective in this paper is to maximize the total MOS of all services by jointly pairing 
users and allocating subchannels. Let X denotes the joint user-pairing and subchannel 
allocation matrix and , ,=[ ]m m c M M Cx ′ × ×X  is a CM M× ×  three dimension matrix. If the cth 
subchannel allocation pattern is allocated for user pair ( ),  m m′ , then , , , ,= 1m m c m m cx x′ ′ = ; 
otherwise , , , ,= 0m m c m m cx x′ ′ = . If m m′= , it means that user m is paired with itself. The 
mathematical expression for QoE-driven joint user-paring and resource allocation in virtual 
MIMO SC-FDMA systems can be described as follows,             
 

, , , ,
=1 =1 =1

max
M M C

m m c m m c
m m c

MOS x′ ′
′

∑∑∑                                         (10) 

 
Subject to: 
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( )
, , , ,

1,  ,  is paired and the th pattern is chosen; 
0,  otherwise.m m c m m c

if m m c
x x′ ′

′
= = 


       (10a) 

 

                                          , ,
=1 c=1

=1   {1,2,..., }
M C

m m c
m

x m M′
′

∀ ∈∑∑                                 (10b) 

 

, , ,
1 1 1

2  =1,2, ,N
M M C

n c m m c
m m c

a x n′
′= = =

= ∀∑∑∑                                    (10c)  

 
where , ,m m cMOS ′   is the sum of MOS of user pair ( ),m m′   when user m and m′  is paired and the 
cth subchannel pattern is chosen;  ,n ca represents the element of matrix A in the nth row and cth 
column. Constraint (10a) means that the user pairing and subchannel allocation matrix is 
symmetrical. Constraint (10b) guarantees that each user can only be selected by one user and 
one subchannel allocation pattern. Constraint (10c) guarantees that subchannels which have 
been allocated by one user pairing in one channel allocation pattern will not be occupied by 
other user pairs. Obviously, the above problem is a verified 3-D assignment one and is 
NP-hard with exponential complexity [19]. Hence, it is necessary to find a suboptimal solution 
with quantifiable accuracy. 

As illustrated above, if U>2, the problem can be described as a (U+1)-D assignment 
problem. Like the mathematical descriptions in the above 3-D assignment problem, the 
previous U dimensions presents user dimension and the final dimension present subchannel 
dimension.  The mathematical expressions for the (U+1)-D assignment problem just needs to 
expand the number of user dimension from 2 to U. And accordingly, the index of variables 
MOS and x should be changed from ( ), ,m m c′  to ( )1 2, , , ,Um m m c . By doing this and keeping 
the constraints unchanged, it is easy to obtain the mathematical expressions in the case of U>2. 
The solution for the case of U>2 is mainly through reducing dimensions from (U+1) to 2 and 
the details about dimension reduction can be referred as [21]. Once the dimension is reduced, 
the following solution for 3-D assignment problem can be applied. Since the case of U>2 is not 
our focus in this paper and can be further studied, the details of the mathematical expressions 
of this case is not listed and the solution process is not illustrated here.  

4. The Modified Lagrangian Relaxation Algorithm 

4.1 Details of the modified Lagrangian relaxation algorithm 
The Lagrangian relaxation algorithm to solve the 3-D assignment is firstly proposed in [21], 
which has two advantages over other suboptimal algorithms. First, the Lagrangian relaxation 
algorithm can provide a measurement of how close the feasible solution is to the (perhaps 
unknowable) optimal solution. Secondly, the computational complexity is polynomial. 
Therefore, in this paper, the Lagrangian relaxation algorithm is applied to solve the joint 
user-pairing and subchannel allocation problem.  

The principle of the Lagrangian relaxation algorithm in [22] is that, if one solution can make 
the gap between the dual problem and the feasible problem very small, this solution can be 
seemed as approximating-optimal one since the object values of dual problem and feasible 
problem are respectively the upper bound and lower bound of the primary problem. The 
approximating-optimal solution is achieved by iterating the Lagrange Multipliers and finding 
the dual and feasible solutions until the duality gap or maximum iteration times arrives. Each 
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iteration includes four steps: first, convert the optimal problem into a dual problem and find 
the dual solution of the dual problem; secondly, update the Lagrangian multipliers by the 
subgradient algorithm; thirdly, based on the updated Lagrangian multipliers , find the feasible 
solution for the primal optimal problem to obtain the upper bound; fourthly, check whether the 
duality gap between the feasible solution and the dual solutions achieve some value or the 
maximum iteration time arrives.  

However, the proposed relaxation algorithm in [22] cannot be directly used since constraint 
(10c) has a little difference with the classical 3-D assignment problem. This difference makes 
the formats of the dual problem, the feasible problem and the subgradient operator are all 
different from the problem in [22]. Therefore, it is necessary to deduce new mathematical 
expressions at each step. In the following, we give the modified Lagrangian relaxation 
algorithm for each step.  

First, the dual solution for problem (10) is achieved. Assuming that l is the iteration time. 
The unconstrained Lagrangian multipliers ( ) ( )1,2, ,l

n n Nλ =  are introduced to the constraint 
(10c). Let ( ) ( )0 0 1,2, ,n n Nλ = =   and the dual function for the problem (7) can be presented as, 
 

( ) ( )
, , , , ,

=1 =1 =1 1 1

min 2
M M C N N

l l
m m c n n c m m c n

m m c n n
MOS a xλ λ′ ′

′ = =

 − − + 
 

∑∑∑ ∑ ∑                  (11) 

Subject to : 
 

( )
, , , ,

1,  ,  is paired and the th pattern is chosen; 
0,  otherwise.m m c m m c

if m m c
x x′ ′

′
= = 

       (11a) 
 

, ,
=1 c=1

=1
M C

m m c
m

x ′
′
∑∑                                                    (11b) 

 
For a given Lagrangian multiplier vector ( ) ( ) ( ) ( )

1 2, , ,l l l l
Nλ λ λ =  λ    , we convert the dual 

problem into a 2-D assignment problem by Lagrangian relaxation. Let 
( ) ( )

, , , ,
1

min
N

l l
m m m m c n n cc n

d MOS aλ′ ′
=

 = − − 
 

∑ , then the optimal objective function can be relaxed as 

follows, 
 

( ) ( ) ( ) ( )
, , , , , , , ,

=1 =1 =1 1 1 =1 =1 1 1

min 2 min 2
M M C N N M M C N

l l l l
m m c n n c m m c n m m m m c n

m m c n n m m c n
MOS a x d xλ λ λ′ ′ ′ ′

′ ′= = = =

  − − + ≥ +  
  

∑∑∑ ∑ ∑ ∑∑ ∑ ∑     (12) 

 

Let , , ,
c=1

C

m m c m mx ω′ ′=∑ , then the modified dual function can be presented as, 

 

   ( )( ) ( )
, ,

1 m =1 1

min 2
M M N

l l
m m m m n

m n
J d ω λ′ ′

′= =

= +∑∑ ∑λ                                       (13) 

Subject to: 
 

,
=1

=1
M

m m
m

ω ′∑                                                                (13a) 
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, ,m m m mω ω′ ′=                                                               (13b) 
 

The optimal solution of problem (13) is a classical 2-D algorithm and can be achieved by 

auction algorithm. The optimal user pairing outcomes are denoted as 
( )( ), l
mm η

. 

Secondly, update the Lagrangian multipliers by the subgradient algorithm. We define 
( )lg  

as an N-dimensional subgradient vector with components given by,   
 

( ) ( ) ( ), , ,
=1 =1 1

2    1,2, ,
M M C

l l
n n c m m c

m m c
g a x n N∗

′
′ =

= − =∑∑∑                                   (14) 

 
where 
 

( )
( ) ( )
, , , ,

1, ,

,  if =arg min

0,        otherwise.

N
l l

l m m n n c m m ci nm m c

c a MOS
x

ω λ∗
′ ′∗

=′

  − −  =   



∑                        (14a) 

 
The Lagrangian multipliers ( ) ( )1 1,2, ,l

n n Nλ + =  are updated via the following and the 
deduced process are not presented in this paper for the limited page.  

 

      ( ) ( )
( )( ) ( )1

2

2

1
l

l l l
n n n

J J
p

ηβλ λ
β

+
 − +  = +      

λ

g
                                       (15) 

 
where 

( ) ( ) ( ) ( ) ( ) ( ); ;l l l l l
np n= =p p H g                                                  (16) 

 

 ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

1 12
1 0

1 1

1
; ;

l l T
l l

l lT

β − −−
−

− −

−
= + =

p p
H H H I

g p
                             (17) 

 
( )1 l

f

eJ Jη η
∗ 

= + 
 

                                                         (18) 

 
( )lJ ∗  is the best dual cost found until and including iteration 1. The parameters e and f are 

tuning parameters with typical values 0.05 0.3e≤ ≤ and 1.1 1.6f≤ ≤ . The parameter ( )1η η ≥ is 

incremented by 1 whenever ( )( ) ( )1l lJ J ∗ −<λ . Otherwise, η  is updated via ( )max 1,1η η= − . The 

parameter β  balances the convergence speed and solution accuracy and it is found that the 
iteration process works well when β  equals to 2 for the proposed problem [22]. 

Then, we need to find the feasible solution to achieve the upper bound of the optimal 
problem. The optimal dual solution along with Eqs.(11) - (11b) may not satisfy the constraint 
(10c). Based on the solution from Eqs.(11) - (11b), the feasible solution can be obtained by 
solve the following 2-D assignment problem (19) which can also be solved by auction 
algorithm, 
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( )
( ) , ,, ,

=1 c=1

min l mm

M C
l

m cm c
m

f MOS x ηη
= ∑∑                                         (19) 

 
Subject to: 
 

( ), ,
c=1

=1    =1,2, ,l
m

C

m c
x m M

η
∀∑                                        (19a) 

 

( ), , ,
1 1

2  =1,2, ,Nl
m

M C

n c m c
m c

a x n
η

= =

= ∀∑∑ 

                                        
(19b) 

 

( ), ,l
m

m c cx x
η

=                                                               (19c) 

Finally, the converged conditions are examined to see whether the iteration should be 
terminated as the following rule, 
 

( ) ( ) ( )* * * min    or   l l lgap f q f gap l L= − ≤ >                             (20) 

 
where mingap is the relative approximate duality gap; L is the maximum iteration time. 
Let ( )

*
, ,lm m c

x  denote the optimal solution of ( ), ,lm m c
x  of problem (19). If Eq.(20) is satisfied, then 

the algorithm is terminated, the solutions of ( )
*

, ,lm m c
x  is the final user-pairing and subchannel 

allocation outcome; otherwise, using the new Lagrangian multipliers obtained in step two to 
implement new turn of the above four steps. The details of the modified Lagrangian relaxation 
algorithm are shown in Table 1. 

4.2 Complexity and Accuracy Analyses 
In this subsection, analyses about the time and space complexities of the proposed algorithm 
and the joint optimal algorithm proposed in [6] which is based on the branch and bound (B&B) 
algorithm. All other suboptimal algorithms in [6] and other works are not considered in this 
paper. Through this analyses, we would like to present how much computational and storage 
capacities are reduced by our proposed algorithm and how proximity of the algorithm can 
achieve the optimal algorithm. 

Before making the analyses, it is assumed that the user number of each pair, i.e. U, is a 
constant once the LTE uplink system model is designed. The subchannel number and user 
number can be variable. This assumption is reasonable since the user number multiplexed on 
the same resource blocks is determined by user-pairing rules which remains unchangeable 
during the joint user-paring and subchannel allocation progress. 

In [6], the mathematical expression for the joint user-pairing and subchannel allocation is 
presented as an integral programming problem. B&B algorithm is applied to find the optimal 
solution. The searching algorithm is proposed which may has exponential computational 
complexity. Actually, this problem can be converted into a 2-D assignment problem. The 
number of rows of the 2-D matrix is U

MC  elements, where U
MC represents the combination 

number of U taken from M. The number of columns of the 2-D matrix is ( )2 2 2N N+ + . 

Hence, it takes  ( )( )2 2 2U
MO N N C+ +  operations to solve the 2-D assignment problem. The  
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storage capacity is at least ( )( )2 2 2U
MO N N C+ + . The computational and storage complexities 

are polynomial with subchannel N and exponential with user number M. Therefore, it is an 
impractical algorithm in real LTE uplink systems. 
 

Table 1. The modified Lagrangian relaxation algorithm 
01:Input: [ ]( ) max min max, 1, , , , , ;n n NK B SEα γ γ∈P H  

( ) ( ) [ ] [ ]1.0 4.5, , 1, , 1, ;m mR R m M i NK∈ ∈  
, , , ,min , .e f gap Lη β   

02:Output:Optimal allocation outcome *
, ,m m cx ′ ; 

Procedure of obtaining ( )ma and ( )mb  
03:for( 1; ;m m M m= ≤ + + ) 
04:      Obtaining ( )ma by Eq.(5); 
05:      Obtaining ( )mb by Eq.(6); 
06:end 
Procedure of obtaining , ,m m cMOS ′ and , ,m m cMOS ′  
07:for( 1; ;m m M m= ≤ + + )  
08:     for( ; ;m m m M m′ ′ ′= ≤ + + ) 
09:        for ( 1; ;c c C c= ≤ + + ) 
10:              obtaining ,m cγ and ,m cγ ′  by Eq.(1); 
11:              obtaining ,m cR and ,m cR ′  by  Eq.(3); 
12:              obtaining , ,m m cMOS ′ and  , ,m m cMOS ′ by Eq.(4); 
13:         end 
14 :   end 
15:end 
Procedure of The modified Lagrangian relaxation algorithm 
16:Initiating ( ) [ ]( )0 0, 1, , , , ,min , .n n N e f L gapλ β= ∈  

17:While( ( ) ( )( ) ( ) min    or   l l lgap f J f gap l L= − > ≤λ  ) 

18:     Getting the dual solutions ( )( )lJ λ , ( )( ), lm m of problem (8) by the processing of 

Eqs.(13)-(13b) 
19:     Updating the Lagrangian multipliers ( ) [ ]( )1,l

n n N∈λ by the processing of Eqs.(15)-(15c) 

20:    Getting the feasible solutions ( )lf , ( )
*

, ,lm m c
x by the processing of Eqs.(16)-(16c) 

21:end 
22:  ( )

* *
, , , ,lm m c m m c

x x′ =  

 
According to the computational complexity analyses in [22], the worst case of Lagrangian 

relaxation algorithm is ( ) ( )( )2 21 2 2O L U M N N− + + , where L is the maximum iteration time. 

The storage capacity requirement in worst case is ( ) ( )( )2 21 2 2O U M N N− + + . Hence, the 
proposed algorithm in this paper has polynomial time and space complexity.  

Furthermore, the quantifiable accuracy of our proposed suboptimal solution can be 
controlled by the minimum duality gap min gap and the maximum iteration number [22]. By 
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simulation, we can see that the suboptimal solutions can be controlled below 8% in the 
following section. 

5. Performance Analysis 
In this section, we validate QoE-driven joint user-pairing and resource allocation algorithms 
for VMIMO SC-FDMA systems. It is reasonable to assume perfect power control for each 
user in the LTE uplink system. Therefore, pathloss and shadowing fading are compensated. 
The small scale fading is modeled as Rayleigh flat fading on each subchannel. Each user is in 
5km/h movement speed. Actually,  since channel estimation is not our focus in this paper and 
perfect channel side information is assumed,  the effective of user velocity on these algorithms 
can be ignored and not discussed in this paper. The ITU-Ped-B channel model is applied for 
each user and channel fading of each user are independent. Four service categories are 
considered, i.e. voice, video streaming, FTP and video conference. Their maximum and 
minimum transmit rates and other simulation parameters are listed in Table 2.  
 

Table 2. Applications in each class 
Simulation parameters Value 

Transmit power on each subcarrier 1w 
Carrier frequency 2GHz 

Sampling frequency 1.92GHz 
Transmit time interval duration 1ms 

System bandwidth 1.4MHz 
Subcarrier spacing 15kHZ 

FFT size   128 
Subcarrier number 72   

K 12 
N 6 

UE antenna number 1 
BS antenna number 2   

( ) ( )
1.0 4.5[ , ]vs vsR R  [400,1100]kpbs  
( ) ( )
1.0 4.5[ , ]vc vcR R  [100,500]kpbs  

( ) ( )
1.0 4.5[ , ]voice voiceR R  [6.4,64]kpbs  
( ) ( )
1.0 4.5[ , ]FTP FTPR R  [200,800]kpbs  

minγ  -10db 

maxγ  15db 

maxSE  2bps/HZ 
 
In these simulations, we compare five different algorithms which are presented as follows: 
1), Throughput-BBS: finding the optimal solutions based on BBS to maximize the system 

throughput [4];  
2), Throughput-UPRA: finding the suboptimal solutions based on UP-RA Alg. to maximize 

the system throughput [4];  
3), MOS-BBS: finding the optimal solutions based on BBS to maximize the sum of MOS;  
4), MOS-SD: finding the suboptimal solution based on S-D Alg. to maximize the sum of 

MOS; 
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5), MOS-UPRA: finding the suboptimal solution based on UP-RA Alg. to maximize the 
system MOS, i.e. firstly choosing all user pairs according to the maximum MOS for each 
subchannel and then allocating all subchannels to the chosen user pairs. 

5.1 Effects of Simulation Frame Number 
Since wireless channel varies from frame to frame, the performance outcome of one frame, no 
matter sum of MOS or system throughput, will also vary all the time. Therefore, it is more 
accurate to compare the average performance in several frames which is named as smoothing 
window and its length is F in this simulation. Along with this consideration is how to choose 
an appropriate value of F. This is because too small F cannot reflect the accurate performance 
and too large F will unnecessarily waste the simulation time. In this subsection, we determine 
F by simulations. And, in the following simulation part, the terms of sum of MOS and system 
throughput refers to the statistical average performance over F. 

Fig. 3 and Fig. 4 respectively show the throughput and sum of MOS performance versus the 
simulation frame number when SNR=10db and M=8. Each service category includes two users. 
From these two figures, we can see that when F=150, the performances of throughput and sum 
of MOS reach a steady state. Hence, in the following simulations, the length of smoothing 
window F is set to be 150. 
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Fig. 3. Throughput versus frame number for all algorithms 
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Fig. 4. Sum of MOS versus frame number for all algorithms 
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5.2 Effects of SNR 
In Fig. 5 and Fig. 6, throughput and system MOS versus SNR are respectively shown when 
M=8. Each service category includes two users. From these two figures, we can see that 
Throughput- BBS algorithm can obtain the maximum system throughput while MOS-BBS 
algorithm can obtain the maximum system MOS. This is because Throughput-BBS algorithm 
may allocate subchannels to user pairs with good channel fading as much as possible while 
subchannels more than in demand cannot improve their QoE. On the other hand, users with 
worse channel conditions cannot obtain enough subchannels to improve QoE and hence the 
system QoE will not be good even SNR is high. The performances of throughput and sum of 
MOS versus SNR further prove that it is necessary to choose the QoE-driven algorithms if the 
objective of resource allocation is to improve user experience.  

In Fig.6, with the SNR increase, sum of MOS of MOS-BBS and MOS-SD algorithms 
increase rapidly and finally to a constant value when 16SNR db≥  while sum of MOS of other 
throughput-driven algorithms grow very slowly. This phenomenon presents that QoE-diven 
joint user-pairing and subchannel allocation algorithms can improve user experience under 
various channel fading conditions while throughput-driven algorithms fail to do so. 
Furthermore, MOS-UPRA algorithm also cannot improve user experience even with SNR 
increasing since it may incorrectly remove some demanding users when doing user pairing at 
the first step. Another interesting phenomenon in Fig.6 is that all MOS gaps between MOS-SD 
and MOS-BBS algorithms for each SNR-value are below 8% which demonstrate that our 
proposed algorithm can control the accuracy of the gap from the optimal algorithm. Gap 
becomes smaller with the SNR increases. This is mainly because channel fading on different 
subchannels become almost the same when SNR becomes very large and all users can obtain 
satisfied experience in these two algorithms.  
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Fig. 5. Throughput versus SNR for all algorithms 
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Fig. 6. Sum of MOS versus SNR for all algorithms 

 

5.3 Effects of User Number 
In Fig .7 and Fig. 8, the performances of throughput and sum of MOS versus user number M 
are respectively presented when SNR is 10dB. The category of sequentially adding users to 
system is FTP, voice, video conference and video steaming. From these two figures, we find 
that performance gaps of sum of MOS between these five algorithms become larger and larger 
with the increase of user number. The main reason is that the amount of resources allocated to 
each user pair decrease with user number increasing and hence user experience becomes more 
sensitive to the outcome of subchannel allocation and user-pairing at each time. However, the 
gap between MOS-BBS and MOS-SD is still small. 

For MOS-UPRA algorithm, this tend becomes more obvious. This phenomenon reflects 
that doing user-pairing firstly according to their sum of MOS on one subchannel will result in 
very inaccurate resource allocation outcome. Thereafter, it further demonstrates the necessity 
of considering the joint user-pairing and subchannel allocation together in the MOS-driven 
resource allocation in VMIMO SC-FDMA systems. 
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Fig. 7. Throughput versus user number for all algorithms 
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Fig. 8. Sum of MOS versus user number for all algorithms 

 

5. Conclusion 
In this paper, we investigate the joint resource allocation and user-pairing problem to improve 
quality of experience (QoE) in the Virtual MIMO SCFDMA system. QoE is quantified by 
mapping quality of service parameters into mean of score (MOS) and our objective is to 
maximize sum of MOS for all users. The joint optimal problem is converted and formulated 
into an S-D assignment problem in this paper. However, S-D assignment problem is also 
NP-hard. Then, a modified Lagrangian relaxation algorithm is proposed to solve the S-D 
assignment problem. So far as we know, it is the first time to research the QoE-driven joint 
resource allocation and user-pairing problem. Compared with all the previous works either 
giving the branch-and-bound search algorithm with exponential complexity or some 
suboptimal algorithms which cannot demonstrate how close the suboptimal solutions to the 
global optimal ones, the Lagrangian relaxation algorithm can achieve the suboptimal results in 
polynomial time complexity and control the gap between suboptimal and optimal outcomes 
under a quantifiable level. Performance comparisons between our proposed algorithm and 
another four conventional algorithms are further made by simulations. The results demonstrate 
that the gap of sum of MOS achieved by our proposed algorithm and the optimal algorithm 
(MOS-BBS) is below 8%. This means that our proposed algorithm can effectively improve 
system quality of experience. 
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