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ON QUASI-LATTICE IMPLICATION ALGEBRAS

YONG HO YON

Abstract. The notion of quasi-lattice implication algebras is a general-
ization of lattice implication algebras. In this paper, we give an optimized
definition of quasi-lattice implication algebra and show that this algebra is
a distributive lattice and that this algebra is a lattice implication algebra.

Also, we define a congruence relation ΦF induced by a filter F and show
that every congruence relation on a quasi-lattice implication algebra is a
congruence relation ΦF induced by a filter F .
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1. Introduction

The notion of lattice implication algebras was introduced in [8] to research a
lattice-valued logic, which is a logical system equipped with a logical implication
and an involution unary operation on a lattice. This logical system was studied
from the algebraic viewpoint in many literature [5, 7, 8, 9], and some operators
on this algebra was studied in [4, 11].

A lattice implication algebra is a bounded lattice (L,∧,∨, 0, 1) with a binary
operation “ → ” and an order-reversing involution “ ′ ” satisfying the following
axioms: for all x, y, z ∈ L,

(I1) x → (y → z) = y → (x → z),
(I2) x → x = 1,
(I3) (x → y) → y = (y → x) → x,
(I4) x → y = y → x = 1 ⇒ x = y,
(I5) x → y = y′ → x′,
(L1) (x ∨ y) → z = (x → z) ∧ (y → z),
(L2) (x ∧ y) → z = (x → z) ∨ (y → z).
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The notion of filters on algebras with implication was introduced and studied
in [3, 6]. This filter is known as deductive filter and different from the notion of
filters on lattices. This filter was proposed and studied as the notion of filters
on lattice implication algebras in [1, 2, 10, 12]. On a lattice implication algebra,
the filter of lattice is the generalized concept of the filter.

A quasi-lattice implication algebra was introduced in [5, 7] as an algebraic
system (L,∧,∨,→, ′, 0, 1) satisfying the axioms (I1)-(I5). This algebra is a gen-
eralization of lattice implication algebras and has the binary operation → and
the involution ′ in the axioms for definition.

In this paper, the quasi-lattice implication algebra will be more clearly de-
fined, and we show that this algebra is a distributive lattice, and hence this
algebra is a lattice implication algebra. Also, an alternative definition of quasi-
lattice implication algebra will be given. In section 3, we define a congruence
relation ΦF induced by a filter F and show that every congruence relation on a
quasi-lattice implication algebra is a congruence relation ΦF induced by a filter
F .

2. Quasi-lattice implication algebra

We will define the notion of quasi-lattice implication algebras by the following
optimized type, and x → y will be denoted by xy.

Definition 2.1. A quasi-lattice implication algebra is an algebraic system (L, ·, ′, 1)
with a binary operation “ · ”, an involution “ ′ ” and an element 1 satisfying the
following axioms: for all x, y, z ∈ L,

(Q1) x(yz) = y(xz),
(Q2) xx = 1,
(Q3) (xy)y = (yx)x,
(Q4) xy = 1 and yx = 1 imply x = y,
(Q5) xy = y′x′.

In the definition of quasi-lattice implication algebra L, the involution ′ is an
unary operation on L such that x′′ = x for every x ∈ L.

Lemma 2.2. Let L be a quasi-lattice implication algebra. Then L satisfies the
following: for all x ∈ L,

(1) 1x = x,
(2) x1 = 1.

Proof. (1) Let x ∈ L. Then x(1x) = 1(xx) = 11 = 1 by (Q1) and (Q2). Also,
we have (1x)x = (x1)1 = (x1)(11) = 1((x1)1) = 1((1x)x) = (1x)(1x) = 1 by
(Q3), (Q2) and (Q1). Hence x(1x) = (1x)x = 1. This implies x = 1x by (Q4).

(2) Let x ∈ L. Then x1 = (1x)1 = (1x)(xx) = x((1x)x) = x((x1)1) =
(x1)(x1) = 1 by (1) of this lemma, (Q2), (Q1) and (Q3). �
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Lemma 2.3. Let L be a quasi-lattice implication algebra. If we define a binary
relation “ ≤ ” by

x ≤ y ⇐⇒ xy = 1

for any x, y ∈ L, then (L,≤) is a poset with the greatest element 1 and the
smallest element 1′.

Proof. For every x ∈ L, x ≤ x by (Q2), and for any x, y ∈ L, x ≤ y and y ≤ x
imply x = y by (Q4).

To show the transitivity, let x ≤ y and y ≤ z. Then xy = 1 and yz = 1, and
we have xz = x(1z) = x((yz)z) = x((zy)y) = (zy)(xy) = (zy)1 = 1 by 2.2, (Q3)
and (Q1). This implies x ≤ z. Hence (L,≤) is a poset.

Also, 1 is the greatest element in L by 2.2(2). Let x ∈ L. Then 1 = x′1 =
1′x′′ = 1′x by 2.2(2), (Q5) and the definition of involution ′. This implies 1′ ≤ x
for every x ∈ L. Hence 1′ is the smallest element in L. �

We will denote the smallest element 1′ in L by 0.

Lemma 2.4. Let L be a quasi-lattice implication algebra. Then L satisfies the
following: for every x, y, z ∈ L,

(1) 1′ = 0 and 0′ = 1,
(2) x′ = x0,
(3) x ≤ yz implies y ≤ xz,
(4) (xy) ≤ (yz)(xz),
(5) (xy) ≤ (zx)(zy),
(6) x ≤ y implies yz ≤ xz and zx ≤ zy,
(7) x ≤ (xy)y,
(8) y ≤ xy,
(9) x ≤ y implies y′ ≤ x′,
(10) ((xy)y)y = xy.

Proof. (1) It is clear that 1′ = 0 by 2.3, and 0′ = 1′′ = 1.
(2) For every x ∈ L, x′ = 1x′ = x′′1′ = x0 by 2.2(1), (Q5) and (1) of this

lemma.
(3) Let x ≤ yz. Then y(xz) = x(yz) = 1. Hence y ≤ xz.
(4) Let x, y ∈ L. Then we have

(xy)((yz)(xz)) = (xy)(x((yz)z)) (by (Q1))

= (xy)(x((zy)y)) (by (Q3))

= (xy)((zy)(xy)) (by (Q1))

= (zy)((xy)(xy)) (by (Q1))

= (zy)1

= 1.

Hence xy ≤ (yz)(xz).
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(5) Let x, y, z ∈ L. Then zx ≤ (xy)(zy) by (4) of this lemma. Hence xy ≤
(zx)(zy) by (3) of this lemma.

(6) Let x ≤ y. Then 1 = xy ≤ (yz)(xz) by (4) of this lemma. This implies
(yz)(xz) = 1. Hence yz ≤ xz. Also, 1 = xy ≤ (zx)(zy) by (5) of this lemma.
This implies (zx)(zy) = 1, and hence zx ≤ zy.

(7) Let x, y ∈ L. Then x((xy)y) = (xy)(xy) = 1. Hence x ≤ (xy)y.
(8) Let x, y ∈ L. Then y(xy) = x(yy) = x1 = 1. Hence y ≤ xy.
(9) Let x ≤ y, Then 1 = xy = y′x′. Hence y′ ≤ x′.
(10) Let x, y ∈ L. Then xy ≤ ((xy)y)y by (7) of this lemma. Also, since

x ≤ (xy)y, ((xy)y)y ≤ xy by (6) of this lemma. Thus xy = ((xy)y)y. �
Theorem 2.5. A quasi-lattice implication algebra L is a lattice with

x ∨ y := sup{x, y} = (xy)y and x ∧ y := inf{x, y} = (x′ ∨ y′)′

for every x, y ∈ L.

Proof. Let x, y ∈ L. Then (xy)y is an upper bound of x and y by (7) and (8) of
2.4. Suppose that u is an upper bound of x and y. Then x ≤ u and y ≤ u, and
yu = 1. This implies uy ≤ xy, and

(xy)y ≤ (uy)y = (yu)u = 1u = u

by 2.4(6) and (Q3). Hence (xy)y is the least upper bound of x and y, and
x ∨ y = (xy)y.

Also, since x′ ≤ x′ ∨ y′ and y′ ≤ x′ ∨ y′, (x′ ∨ y′)′ ≤ x′′ = x and (x′ ∨ y′)′ ≤
y′′ = y by 2.4(9). Hence (x′ ∨ y′)′ is a lower bound of x and y. Suppose that
l ≤ x and l ≤ y. Then x′ ≤ l′ and y′ ≤ l′. This implies x′ ∨ y′ ≤ l′. Hence
l = l′′ ≤ (x′ ∨ y′)′. This means (x′ ∨ y′)′ is the greatest lower bound of x and y,
and x ∧ y = (x′ ∨ y′)′. �
Lemma 2.6. Let L be a quasi-lattice implication algebra. Then L satisfies the
following: for every x, y, z ∈ L,

(1) (x ∨ y)′ = x′ ∧ y′,
(2) (x ∧ y)′ = x′ ∨ y′,
(3) (x ∨ y)z = (xz) ∧ (yz),
(4) z(x ∧ y) = (zx) ∧ (zy).

Proof. (1) Let x, y ∈ L. Then x′ ∧ y′ = (x′′ ∨ y′′)′ = (x ∨ y)′ by 2.5.
(2) Let x, y ∈ L. Then (x ∧ y)′ = (x′ ∨ y′)′′ = x′ ∨ y′ by 2.5.
(3) Let x, y, z ∈ L. Then x ≤ x ∨ y and y ≤ x ∨ y. This implies (x ∨ y)z ≤

xz and (x ∨ y)z ≤ yz by 2.4(6). Hence (x ∨ y)z ≤ (xz) ∧ (yz). Also, since
(xz) ∧ (yz) ≤ xz and (xz) ∧ (yz) ≤ yz, we have

x ≤ ((xz) ∧ (yz))z and y ≤ ((xz) ∧ (yz))z

by 2.4(3). This implies x ∨ y ≤ ((xz) ∧ (yz))z, and (xz) ∧ (yz) ≤ (x ∨ y)z by
2.4(3). Hence (x ∨ y)z = (xz) ∧ (yz).

(4) Let x, y, z ∈ L. Then we have z(x ∧ y) = (x ∧ y)′z′ = (x′ ∨ y′)z′ =
(x′z′) ∧ (y′z′) = (zx) ∧ (zy) by (Q5) and (3) of this lemma. �
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Theorem 2.7. Let L be a quasi-lattice implication algebra. Then L is distribu-
tive.

Proof. Let x, y, z ∈ L. Then it is clear that (x ∧ y) ∨ (x ∧ z) ≤ x ∧ (y ∨ z) since
x ∧ y ≤ x ∧ (y ∨ z) and x ∧ z ≤ x ∧ (y ∨ z). Conversely, we have

x′ ∨ (y ∨ z)′ = (x′(y ∨ z)′)(y ∨ z)′

= (x′(y′ ∧ z′))(y ∨ z)′ (by 2.6(1))

= ((x′y′) ∧ (x′z′))(y ∨ z)′ (by 2.6(4))

= ((x′y′) ∧ (x′z′))(y′ ∧ z′)

= (((x′y′) ∧ (x′z′))y′) ∧ (((x′y′) ∧ (x′z′))z′)

≥ ((x′y′)y′) ∧ ((x′z′)z′) (by 2.4(6))

= (x′ ∨ y′) ∧ (x′ ∨ z′)

since (x′y′) ∧ (x′z′) ≤ x′y′ and (x′y′) ∧ (x′z′) ≤ x′z′. This implies

x ∧ (y ∨ z) = (x′ ∨ (y ∨ z)′)′

≤ ((x′ ∨ y′) ∧ (x′ ∨ z′))′ (by 2.4(9))

= (x′ ∨ y′)′ ∨ (x′ ∨ z′)′

= (x ∧ y) ∨ (x ∧ z).

Hence x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). �

In a lattice L, it is well known that the following are equivalent:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for every x, y, z ∈ L,
(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for every x, y, z ∈ L.

This mean that a lattice L is a distributive if and only if x∨(y∧z) = (x∨y)∧(x∨z)
for every x, y, z ∈ L.

Theorem 2.8. Every quasi-lattice implication algebra is a lattice implication
algebra.

Proof. Let (L,→, ′, 1) be a quasi-lattice implication algebra. Then it satisfies
the axioms (I1)-(I5) from the definition. Also L is a lattice and satisfies the
axiom (L1) by 2.6(3). So we need only to show that it satisfies the axiom (L2).

Let x, y, z ∈ L. Then we have

((x ∧ y)z)z = z ∨ (x ∧ y) (by 2.5)

= (z ∨ x) ∧ (z ∨ y) (by 2.7)

= ((xz)z) ∧ ((yz)z) (by 2.5)

= ((xz) ∨ (yz))z (by 2.6(3)).
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This implies
(x ∧ y)z = (((x ∧ y)z)z)z (by 2.4(10))

= (((xz) ∨ (yz))z)z

= ((xz) ∨ (yz)) ∨ z (by 2.5)

= (xz) ∨ (yz),

since z ≤ (xz) ∨ (yz). Thus L satisfies the axiom (L2) and so it is a lattice
implication algebra. �

It is clear that a lattice implication algebra is a quasi-lattice implication al-
gebra. From the above theorem, the notion of quasi-lattice implication algebras
is equivalent to that of lattice implication algebras.

Theorem 2.9. A set L is a quasi-lattice implication algebra if and only if there
are a binary operation · on L and two elements 0, 1 in L satisfying the following:
for every x, y, z ∈ L,

(Q1) x(yz) = y(xz),
(Q2) xx = 1,
(Q3) (xy)y = (yx)x,
(Q4) xy = 1 and yx = 1 imply x = y,
(B) 0x = 1.

Proof. Let L be a quasi-lattice implication algebra. Then it satisfies the proper-
ties (Q1)-(Q4) and (B) by the definition of quasi-lattice implication algebra and
2.3.

Conversely, suppose that L be a set with a binary operation · and two elements
0, 1 satisfying the properties (Q1)-(Q4) and (B). Then we need to show that there
is an involution ′ on L satisfying (Q5) : xy = y′x′ for every x, y ∈ L.

It can be proved that 1x = x for every x ∈ L in the same way as the proof of
2.2(1). Let x′ = x0. Then we have x′′ = (x0)0 = (0x)x = 1x = x by (Q3) and
(B). So ′ is an involution, and it satisfies the following.

y′x′ = (y0)(x0) = x((y0)0) = xy′′ = xy

by (Q1). Hence (L, ·,′ , 1) is a quasi-lattice implication algebra. �

3. Congruence relations on quasi-lattice implication algebras

A subset F of a quasi-lattice implication algebra L is called a filter of L if it
satisfies the following: for any x, y ∈ L,

(F1) 1 ∈ F ,
(F2) x ∈ F and xy ∈ F imply y ∈ F .

Lemma 3.1. If F is a filter of a quasi-lattice implication algebra L, then F is
a lattice filter of lattice L, i.e., F satisfies the following:

(1) x ∈ F and x ≤ y imply y ∈ F ,
(2) x, y ∈ F implies x ∧ y ∈ F .
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Proof. (1) Let x ∈ F and x ≤ y. Then xy = 1 ∈ F . Hence y ∈ F since x ∈ F .
(2) Let x, y ∈ F . Then y ≤ xy. This implies xy ∈ F by (1) of this lemma,

and x(x ∧ y) = (xx) ∧ (xy) = 1 ∧ (xy) = xy ∈ F by 2.6(4). Since x(x ∧ y) ∈ F
and x ∈ F , x ∧ y ∈ F . �

The converse of Lemma 3.1 is not true in general, as the following example
shows.

Example 3.2. Let Q = {0, a, b, c, d, 1} be a set with a binary operation · defined
by the following Cayley table:

· 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 1 1
b c c 1 c 1 1
c b d b 1 d 1
d a c d c 1 1
1 0 a b c d 1

If we define x′ = x0 for every x ∈ Q, then (Q, ·, ′, 1) is a quasi-lattice implication
algebra. Also, it is a lattice with x∨y = (xy)y and x∧y = (x′∨y′)′ = ((x′y′)y′)′.
This lattice is depicted by Hasse diagram of Figure 1. Let F = {a, c, d, 1}. Then

r1rc ra

r dr
br

0
��

�

QQ
Q���

QQQ
�����

Figure 1. Hasse diagram of a lattice Q

F is a lattice filter of lattice Q, but it is not filter of Q, because a ∈ F and
ab = d ∈ F but b ̸∈ F .

For any filter F of a quasi-lattice implication algebra L, we can define a binary
relation ΦF on L by

xΦF y ⇐⇒ xy ∈ F and yx ∈ F

for any x, y ∈ L.

Lemma 3.3. Let F be a filter of L. Then ΦF is a congruence relation.

Proof. For any x ∈ L, it is clear that xΦFx, since xx = 1 ∈ F , and that xΦF y
implies yΦFx.

To show the transitivity of ΦF , let xΦF y and yΦF z. Then xy, yx ∈ F and
yz, zy ∈ F . Since xy ≤ (yz)(xz) by 2.4(4), (yz)(xz) ∈ F by 3.1(1). This implies
xz ∈ F since yz ∈ F . Also, we can see zx ∈ F in the similar way. Hence xΦF z.
Thus ΦF is an equivalence relation in L.
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To show that ΦF is a congruence relation on L, let xΦF y and z ∈ L. Then
xy, yx ∈ F . Since xy ∈ F and xy ≤ (zx)(zy) by 2.4(5), (zx)(zy) ∈ F . Also,
since yx ∈ F and yx ≤ (zy)(zx), (zy)(zx) ∈ F . Thus (zx)ΦF (zy), and ΦF is left
compatible. In the similar way, we can show (xz)(yz), (yz)(xz) ∈ F by 2.4(4).
That is (xz)ΦF (yz), and ΦF is right compatible. Hence ΦF is a congruence
relation on L. �

We will call this relation ΦF as a congruence relation induced by a filter F .
For any equivalence relation Θ on a quasi-lattice implication algebra L, we

will write [x]Θ for the equivalence classes.

Lemma 3.4. Let L be a quasi-lattice implication algebra. If Θ is a congruence
relation on L, then [1]Θ is a filter of L.

Proof. Let Θ be a congruence relation on L. Then it is trivial that 1 ∈ [1]Θ. If
x ∈ [1]Θ and xy ∈ [1]Θ, then xΘ1 and xyΘ1 imply xyΘ1y and xyΘ1, hence yΘ1
since 1y = y. This implies y ∈ [1]Θ. Thus [1]Θ is a filter of L. �

Theorem 3.5. Every congruence relation on a quasi-lattice implication algebra
L is a congruence relation induced by a filter.

Proof. Suppose that Θ is a congruence relation on L. Then [1]Θ is a filter by
3.4. Set F = [1]Θ, and we will show that Θ = ΦF .

Let xΘy. Then xyΘyy and yxΘyy, since Θ is a congruence relation. This
implies xyΘ1 and yxΘ1, and xy, yx ∈ [1]Θ = F . Thus xΦF y. Also, let xΦF y.
Then xy, yx ∈ F = [1]Θ. This implies xyΘ1 and yxΘ1, and (xy)yΘ1y and
(yx)xΘ1x, i.e., (xy)yΘy and (yx)xΘx. Hence xΘy since (xy)y = (yx)x.

This mean Θ = ΦF , and Θ is a congruence relation induced by the filter
F = [1]Θ. �

Let L be a quasi-lattice implication algebra. Then the family Fil(L) (resp.
Con(L)) of all filters of L (resp. all congruence relations on L) is partially
ordered by set inclusion, and it is a complete lattice with∧

α∈Λ Fα =
∩

α∈Λ Fα and
∨

α∈Λ Fα =
⟨∪

α∈Λ Fα

⟩
(resp.

∧
α∈Λ Θα =

∩
α∈Λ Θα and

∨
α∈Λ Θα =

⟨∪
α∈Λ Θα

⟩
)

for arbitrary subset {Fα | α ∈ Λ} of Fil(L) (resp. {Θα | α ∈ Λ} of Con(L)),
where ⟨X⟩ is the filter (resp. the congruence relation ) generated by a subset X
of L (resp. of L× L).

Lemma 3.6. Let L be a quasi-lattice implication algebra. Then it satisfies the
following:

(1) [1]ΦF
= F for every F ∈ Fil(L),

(2) Φ[1]Θ = Θ for every Θ ∈ Con(L),
(3) F ⊆ G if and only if ΦF ⊆ ΦG for any F,G ∈ FIl(L),
(4) Θ ⊆ Ψ if and only if [1]Θ ⊆ [1]Ψ for any Θ,Ψ ∈ Con(L).
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Proof. (1) Let F ∈ Fil(L). Then we have

x ∈ [1]ΦF ⇐⇒ xΦF 1 ⇐⇒ (x1 = 1 ∈ F and 1x = x ∈ F ) ⇐⇒ x ∈ F.

Hence [1]ΦF = F .
(2) It was proved in the proof of 3.5.
(3) Let F ⊆ G in Fil(L) and xΦF y. Then xy, yx ∈ F , and xy, yx ∈ G since

F ⊆ G. This implies xΦGy. Hence ΦF ⊆ ΦG. Conversely, let ΦF ⊆ ΦG and
x ∈ F . Then x1 = 1 ∈ F , since F is a filter, and 1x = x ∈ F . This implies
xΦF 1, and xΦG1 since ΦF ⊆ ΦG. This implies 1x = x ∈ G. Hence F ⊆ G.

(4) Let Θ,Ψ ∈ Con(L). Then since Θ = Φ[1]Θ and Ψ = Φ[1]Ψ by (2) of this
lemma, we have

Θ ⊆ Ψ ⇐⇒ Φ[1]Θ ⊆ Φ[1]Ψ ⇐⇒ [1]Θ ⊆ [1]Ψ

by (3) of this lemma. �

Theorem 3.7. Let L be a quasi-lattice implication algebra and ϕ : Fil(L) →
Con(L) a map defined by ϕ(F ) = ΦF for every F ∈ Fil(L). Then it satisfies
the following:

(1) ϕ is order-isomorphism,
(2) ϕ preserves arbitrary join and arbitrary meet.

Proof. (1) Let ϕ : Fil(L) → Con(L) be a map defined by ϕ(F ) = ΦF for
every F ∈ Fil(L). Then F ⊆ G if and only if ϕ(F ) = ΦF ⊆ ΦG = ϕ(G) by
3.6(3). Hence ϕ is order-embedding. Also let Θ ∈ Con(L). Then there exists
F = [1]Θ ∈ Fil(L) such that ϕ(F ) = Φ[1]Θ = Θ by 3.6(2). Hence ϕ is onto.

(2) Let {Fα | α ∈ Λ} be an arbitrary subset of Fil(L). Then ϕ(Fβ) ⊆
ϕ(
∨

α∈Λ Fα) for every β ∈ Λ, since ϕ is order-preserving by (1) of this theorem.
Hence ϕ(

∨
α∈Λ Fα) is an upper bound of the set {ϕ(Fα) | α ∈ Λ}

Suppose that ϕ(Fβ) = ΦFβ
⊆ Θ for every β ∈ Λ. Then by (1) and (4) of 3.6,

Fβ = [1]ΦFβ
⊆ [1]Θ for every β ∈ Λ. This implies

∨
α∈Λ Fα ⊆ [1]Θ, and hence

ϕ(
∨

α∈Λ Fα) ⊆ ϕ([1]Θ) = Φ[1]Θ = Θ.

Thus ϕ(
∨

α∈Λ Fα) is the least upper bound of the set {ϕ(Fα) | α ∈ Λ}. Hence
ϕ(
∨

α∈Λ Fα) =
∨

α∈Λ ϕ(Fα). Also, we can show ϕ(
∧

α∈Λ Fα) =
∧

α∈Λ ϕ(Fα) in
the similar way. �

From the above theorem, Fil(L) and Con(L) of a quasi-lattice implication
algebra L have the same structure as complete lattices.
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