DOI QR코드

DOI QR Code

Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid

  • Received : 2015.03.14
  • Accepted : 2015.06.20
  • Published : 2015.10.31

Abstract

Keywords

References

  1. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). http://dx.doi.org/10.1038/35104634.
  2. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.
  3. Kim BJ, Park SJ. Optimization of the pore structure of nickel/graphite hybrid materials for hydrogen storage. Int J Hydrogen Energy, 36, 648 (2011). http://dx.doi.org/10.1016/j.ijhydene.2010.09.097.
  4. Wang J, Senkovska I, Kaskel S, Liu Q. Chemically activated fungi-based porous carbons for hydrogen storage. Carbon, 75, 372 (2014). http://dx.doi.org/10.1016/j.carbon.2014.04.016.
  5. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. J Colloid Interface Sci, 318, 42 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.024.
  6. Zhu Y, Liu Z, Yang Y, Gu H, Li L, Cai M. Hydrogen storage properties of Mg-Ni-C system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling. Int J Hydrogen Energy, 35, 6350 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.094.
  7. Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.
  8. Silambarasan D, Surya VJ, Vasu V, Iyakutti K. Single walled carbon nanotube-metal oxide nanocomposites for reversible and reproducible storage of hydrogen. ACS Appl Mater Interfaces, 5, 11419 (2013). http://dx.doi.org/10.1021/am403662t.
  9. Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy, 33, 4112 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.05.077.
  10. Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.
  11. Brooks KP, Semelsberger TA, Simmons KL, van Hassel B. Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. ACS Appl Mater Interfaces, 268, 950 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.05.145.
  12. Jung MJ, Kim JW, Im JS, Park SJ, Lee YS. Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Eng Chem, 15, 410 (2009). http://dx.doi.org/10.1016/j.jiec.2008.11.001.
  13. Song MY, Kwak YJ, Lee SH, Park HR, Kim BG. Hydrogen-storage properties of MgH2-10Ni-2NaAlH4-2Ti prepared by reactive mechanical grinding. J Ind Eng Chem, 20, 1591 (2014). http://dx.doi.org/10.1016/j.jiec.2013.07.052.
  14. Fukuzumi S, Suenobu T. Hydrogen storage and evolution catalysed by metal hydride complexes. Dalton Trans, 42, 18 (2013). http://dx.doi.org/10.1039/C2DT31823G.
  15. Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y. Fabrication of high pressure hydrogen adsorption/desorption unit: adsorption study on flame synthesized carbon nanofibers. J Ind Eng Chem, 19, 944 (2013). http://dx.doi.org/10.1016/j.jiec.2012.11.013.
  16. Liu C, Chen Y, Wu CZ, Xu ST, Cheng HM. Hydrogen storage in carbon nanotubes revisited. Carbon, 48, 452 (2010). http://dx.doi.org/10.1016/j.carbon.2009.09.060.
  17. Lee SY, Park SJ. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett, 13, 73 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.073.
  18. Cai J, Li L, Lv X, Yang C, Zhao X. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application. ACS Appl Mater Interfaces, 6, 167 (2014). http://dx.doi.org/10.1021/am403810j.
  19. Park SJ, Lee SY. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41. J Colloid Interface Sci, 346, 194 (2010). http://dx.doi.org/10.1016/j.jcis.2010.02.047.
  20. Klyamkin SM, Chuvikov SV, Maletskaya NV, Kogan EV, Fedin VP, Kovalenko KA, Dybtsev DN. High-pressure hydrogen storage on modified MIL-101 metal-organic framework. Int J Energy Res, 38, 1562 (2014). http://dx.doi.org/10.1002/er.3175.
  21. Sumida K, Stück D, Mino L, Chai JD, Bloch ED, Zavorotynska O, Murray LJ, Dincă M, Chavan S, Bordiga S, Head-Gordon M, Long JR. Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. J Am Chem Soc, 135, 1083 (2013). http://dx.doi.org/10.1021/ja310173e.
  22. Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). http://dx.doi.org/10.1016/j.jcis.2007.10.018.
  23. He L, Melnichenko YB, Gallego NC, Contescu CI, Guo J, Bahadur J. Investigation of morphology and hydrogen adsorption capacity of disordered carbons. Carbon, 80, 82 (2014). http://dx.doi.org/10.1016/j.carbon.2014.08.041.
  24. Jasminská N, Brestovič T, Puškár M, Grega R, Rajzinger J, Korba J. Evaluation of hydrogen storage capacities on individual adsorbents. Measurement, 56, 219 (2014). http://dx.doi.org/10.1016/j.measurement.2014.07.002.
  25. Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.01.011.
  26. Roussel T, Pellenq RJM, Bienfait M, Vix-Guterl C, Gadiou R, Bé-guin F, Johnson M. Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons. Langmuir, 22, 4614 (2006). http://dx.doi.org/10.1021/la0527386.
  27. Xia K, Gao Q, Wu C, Song S, Ruan M. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon, 45, 1989 (2007). http://dx.doi.org/10.1016/j.carbon.2007.06.002.
  28. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F. Electrochemical energy storage in ordered porous carbon materials. Carbon, 43, 1293 (2005). http://dx.doi.org/10.1016/j.carbon.2004.12.028.
  29. Xia K, Gao Q, Song S, Wu C, Jiang J, Hu J, Gao L. CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int J Hydrogen Energy, 33, 116 (2008). http://dx.doi.org/10.1016/j.ijhydene.2007.08.019.
  30. Kim BJ, Park SJ. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons. J Colloid Interface Sci, 311, 619 (2007). http://dx.doi.org/10.1016/j.jcis.2007.03.049.
  31. Froudakis GE. Hydrogen interaction with single-walled carbon nanotubes: a combined quantum-mechanics/molecular-mechanics study. Nano Lett, 1, 179 (2001). http://dx.doi.org/10.1021/nl015504p.
  32. Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.04.083.
  33. Wang L, Yang RT. New sorbents for hydrogen storage by hydrogen spillover: a review. Energy Environ Sci, 1, 268 (2008). http://dx.doi.org/10.1039/B807957A.