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Over the years, the furnace has been used as a common heating method to manufacture 
activated carbon. In a furnace, heat is transferred through conduction and convection. The 
outer surface of the sample is in contact with the generated heat, which slowly diffuses 
inwards as a result of the thermal gradient between the surface and the core of the material’s 
particles. Another method of heating employs microwave irradiation. Even though it is less 
energy- and time-consuming, the microwave method has several critical issues with respect 
to temperature control and thermal runaway, especially in the scaling-up of the microwave 
heating process [1].

Generally, the activation of a carbonaceous precursor can be performed through physical 
(steam, air or CO2) or chemical activation (activators such as ZnCl2, KOH, etc.) or a 
combination of both. The chemical activation is normally preferable over physical activation 
since it is a faster process with a lower activation temperature. Moreover, the activated 
carbon produced via chemical activation usually possesses high specific surface area (as 
determined by the Brunauer-Emmett-Teller, BET method), good pore development and high 
carbon yield [2,3]. In recent years, potassium salts such as KOH and K2CO3 have been 
widely used in the manufacture of low cost activated carbon. It has been found that activated 
carbon prepared by KOH activation is highly microporous when compared to that produced 
through ZnCl2 or H3PO4 activation [4-6]. Besides, KOH also enhances the specific surface 
area and the formation of—OH functional groups on the carbon surface [7].

Over the past 5 years, many advantages of KOH activation have been revealed in the 
literature [8]. However, the adverse drawbacks of employing KOH have been overlooked 
in many of the published studies. In this paper, the preparation of activated carbon by 
KOH activation using conventional heating is reviewed and discussed. The limitations 
and implications of using KOH in the activation process are highlighted. The selection of 
appropriate potassium salts for activated carbon preparation is also recommended. 

The physical preparation of activated carbon is comprised of two major processes, namely, 
carbonization and activation of the carbonized sample [4]. Chemical activation is a single step 
process, as both carbonization and activation occur simultaneously at temperatures ranging 
between 400oC and 700oC, which is lower than that of physical activation [9]. However, in 
some cases, additional carbonization or a pre-carbonization step is performed to produce 
char prior to chemical impregnation and activation [5,4,10-13]. Thus, potassium hydroxide 
activation can be achieved through either direct chemical activation or char-impregnated 
chemical activation. 

In direct chemical activation, a selected carbonaceous precursor is first dried overnight to 
remove moisture and then chemically treated at a desired impregnation ratio (weight of KOH 
over weight of precursor). The impregnated solid is then heated in a furnace at a specified 
temperature and time. Carbonization of the precursor is often omitted when the impregnated 
solid is already suitable for activation. 

Table 1 exhibits recently developed activated carbon preparation methods using various 
precursors and KOH activation with conventional heating. From Table 1, it can be seen that 
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production. 
Potassium hydroxide has been widely used as an activating 

agent in activated carbon preparation. It is evident that KOH 
activation produces activated carbon with a greater specific 
surface area and good pore development, but the resulting 
yield is typically low (around 10%-40%) as compared to 
other activators like ZnCl2 and H3PO4. This is likely due to 
the development of pores, which accelerates the carbon loss 
as a result of the intercalation of metallic potassium ions into 
the carbon network [26]. During carbonization, KOH acts as 
a dehydrating agent, to eliminate the presence of water in the 
precursor, which thereafter would cause the formation of tar that 
could clog the pores. The carbonization phase is given as:

Dried precursor → Char + Tar + Gasses

During the activation process, the following reactions take 
place [27,28].

C + 2KOH → 2K + H2 + CO2

C + 2KOH → 2K + H2O + CO

CO2 + 2KOH → K2CO3 + H2O

Both mesopores and micropores are formed as a result of the 
intercalation of potassium into the carbon network during the 
activation. Besides, there is also a possibility for a secondary 
reaction to occur as follows [28].

H2O + C + 2KOH → K2CO3 + H2

Abechi et al. [5] stated that potassium carbonate produced 
from KOH activation could avert excessive sample burn-off, and 
consequently lead to a high product yield and well developed 
porosity. However, this notion is not scientifically proven 
and somewhat contradicted by the findings shown in Table 1. 
According to Khalil et al. [29], the activated carbon yield is 
lower at activation temperatures >700oC because KOH may 
catalyze the oxidation reactions. As a result, the outer surface 
carbon atoms are oxidized leading to the formation of pores. 
This is in agreement with the findings by Mestre et al. [30]. The 
starting material is likely to disintegrate into powder form when 
activated with alkaline hydroxide owing to the formation of 
pores as a result of gasification reactions [31]. In another words, 
activated carbon with low yield but high porosity is elicited at 
the expense of char burn-off. 

Activated carbon is an economical adsorbent with unique 
textural properties and good adsorption capacity. In traditional 
applications, microporous activated carbon (pore width <2 
nm) is usually employed. However, the development of highly 
mesoporous activated carbon (2 nm < pore width <50 nm) 
has gaining considerable attention due to its wide range of 
applications.

From Table 1, it is noteworthy that nearly all KOH-activated 
carbons possess extensive microporosity, and some can reach up 
to 96%. The grape seed activated carbon is mainly microporous 
with a surface area of 1222 m2/g [6], while the rice husk activated 
carbon (2696 m2/g) is mainly mesoporous [12]. The mesoporous 

char-impregnated chemical activation is more favourable in the 
manufacture of activated carbon as compared to direct chemical 
activation. Pre-carbonization, executed in some studies [12,14], 
produces some advantages in the textural properties of the 
activated carbon, although KOH is a strong base which supports 
single step activation. 

According to Zaini and Kamaruddin [1], the need for pre-
carbonization is determined by the chemical nature of the raw 
material and the activators used. A starting material which 
undergoes pre-carbonization (in air or N2) could offer larger specific 
surface area and some initial pore development. As a result, KOH 
molecules can easily come into contact with the outer surface of 
the char. Moreover, the organic substances are converted into rich 
carbon structure which allows the material to be subjected to more 
KOH activation. In another words, the produced char is more 
susceptible to chemical reaction with KOH, which consequently 
leads to the formation of a higher degree of mesopores and 
micropores. Nevertheless, due to insufficient current information, 
a distinctive contrast between direct chemical activation and char-
impregnated chemical activation is deferred.

From Table 1, it is generally found that an activation temperature 
above 800oC and an activation time of more than 30 min will 
produce activated carbon with a specific surface area greater than 
900 m2/g [6,10-12,15,16]. However, some studies have revealed 
a lower product yield of 17% to 31% when a temperature above 
800oC was used [6,12,17]. In other words, higher activation 
temperature and longer retention time could promote the further 
development of pores, which consequently leads to a greater 
surface area of up to 2696 m2/g, and at the same time suffers a lower 
carbon yield [12]. The pyrolysis with KOH reduces the amount of 
carbon due to the intercalation of potassium ions into the carbon 
matrix, which accelerates the carbon liberation. In addition, further 
increase in the activation temperature and time may result in both 
lower surface area and carbon yield, as the micropores collapse to 
form mesopores and eventually macropores [5]. 

Li et al. [18] stated that KOH activation of carbon-rich kraft 
lignin produces activated carbon with the superior surface area 
of 2763 m2/g. Muniandy et al. [12] also showed that rice husk 
with 27% carbon content ends up with activated carbon with a 
similar surface area of 2696 m2/g. Thus, it can be said that the 
carbon content of the precursor may not necessarily affect the 
pore development of the resulting activated carbon. However, 
a carbon-rich precursor is generally a potential candidate for 
activated carbon. 

At present, many studies have focused on furnace improve-
ment for the mass production of activated carbon. Most of the 
chemically treated commercial activated carbons are being 
synthesized by the conventional heating method owing to its 
simple temperature monitoring technique. Rahman and Bari[19] 
claimed that the production cost of physical activation of rice 
husk using a fabricated, high capacity furnace is relatively lower 
than that of a muffle furnace or horizontal tube furnace, while 
producing activated carbon with better adsorption capacity.

Despite the fact that microwave heating may have some 
advantages, like shorter activation time, and produces a resultant 
activated carbon with high specific surface area and yield, 
scientists and engineers are repeatedly dissuaded by a lack of 
in-depth understanding of microwave energy especially in the 
scaling-up of the heating process for mass activated carbon 
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and potassium acetate are potential substitutes for KOH owing 
to their lower toxicity and reduced impact on the environment. 

Potassium chloride (KCl) and potassium acetate (KCOOH) 
could be regarded as the best substitutes for KOH because of 
their low health hazard rating, and they are safer to handle and 
store. The implications of both KCl and KCOOH on the human 
and environment are almost similar. Ingestion of KCl may affect 
human behaviour, metabolism, blood, cardiovascular, respiratory, 
digestive and urinary system, while that of KCOOH may trigger 
nausea and vomiting. The effects of other potassium salts are 
summarized in Table 2. Nevertheless, further investigations on 
these alternative activators would be imperative to ensure the 
effectiveness of activation and also to establish activated carbon 
with excellent adsorptive properties.

Potassium hydroxide (KOH) has been widely used as an 
activator for preparing activated carbon. Despite producing well 
developed porosity and a high specific surface area, the activated 
carbon yield is usually low. Moreover, the activated carbon 
produced is highly microporous and this somewhat restricts its 
applications for the removal of macro-pollutants in air and water. 
There is also considerable concern over the use of KOH as an 
activating agent because of its toxicity and detrimental impacts 
on humans and the environment. Such drawbacks should be 
taken into account in the activated carbon preparation. Also, it 
is of utmost importance to establish alternative activators in the 
manufacture of excellent activated carbon.
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