DOI QR코드

DOI QR Code

Effects of digestion temperatures and loading amounts on methane production from anaerobic digestion with crop residues

  • Shin, Joung Du (Department of Climate Change and Ecology, Agro-Environmental Division, National Academy of Agricultural Science, RDA) ;
  • Park, Sang Won (R&D Performance Evaluation and Management Division, Research Policy Bureau, RDA) ;
  • Lee, Sun-Il (Department of Climate Change and Ecology, Agro-Environmental Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyunook (Department of Environmental Engineering, University of Seoul) ;
  • Lee, Sang Ryong (Department of Animal Biotechnology and Environment, National Institute of Animal Science, RDA) ;
  • Kim, Myoung Suk (Department of Soil Management, Agro-Environmental Division, National Academy of Agricultural Science, RDA)
  • Received : 2015.06.26
  • Accepted : 2015.08.07
  • Published : 2015.10.31

Abstract

Keywords

References

  1. Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C, eds. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, Cambridge (2011).
  2. Deublein D, Steinhauser A. Biogas from Waste and Renewable Resources: An Introduction. 2nd ed., Wiley-VCH, Weinheim (2001).
  3. Bauen A, Jeremy W, Hailes R. Biopowerswitch: A Biomass Blue Print to Meet 15% of OECD Electricity Demand by 2020. WWF Climate Change Program, Berlin, 26 (2004).
  4. Shin J, Hong S, Kwon S, Park W, Kim G, Kim S, Yang J. Assessment of methane potential production with agricultural biomass in Korea. International Workshop on Bio-energy Production and Utilizationin Agricultural Sector, 49-69 (2010).
  5. Murto M, Björnsson L, Mattiasson B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J Environ Manage, 70, 101 (2004). http://dx.doi.org/10.1016/j.jenvman. 2003.11.001.
  6. Shin JD, Han SS, Eom KC, Sung SH, Park SW, Kim HO. Predicting methane production potential of anaerobic co-digestion of swine manure and food waste. Environ Eng Res, 13, 93 (2008). http://dx.doi.org/10.4491/eer.2008.13.2.093.
  7. Ghosh S, Conrad JR, Klass DL. Anaerobic acidogenesis of waste-water sludge. J Water Pollut Control Fed, 47, 30 (1975).
  8. Hawkes FR, Hawkes DL. Anaerobic Digestion. In: Bu’Lock J, Kristiansen B, eds. Basic Biotechnology, Academic Press, London, 337 (1987).
  9. van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LW, Lens P, Verstraete W; Management Committee of the IWA Anaerobic Digestion Specialised Group. New perspectives in anaerobic digestion. Water Sci Technol, 43, 1 (2001).
  10. Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy, 22, 71 (2002). http://dx.doi.org/10.1016/s0961-9534(01)00057-5.
  11. Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol, 52, 741 (1999). https://doi.org/10.1007/s002530051586
  12. Förordning (2001:512) om Deponering av Avfall. Available from: http://www.notisum.se/rnp/sls/lag/20010512.HTM.
  13. Hinken L, Urban I, Haun E, Urban I, Weichgrebe D, Rosenwinkel KH. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Water Sci Technol, 58, 1453 (2008). http://dx.doi.org/10.2166/wst.2008.491.
  14. Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B. Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol, 31, 190 (2008). http://dx.doi.org/10.1016/j.syapm.2008.02.003.
  15. Lebuhn M, Liu F, Heuwinkel H, Gronauer A. Biogas production from mono-digestion of maize silage–long-term process stability and requirements. Water Sci Technol, 58, 1645 (2008). http://dx.doi.org/10.2166/wst.2008.495.
  16. Wichern M, Gehring T, Fischer K, Andrade D, Lübken M, Koch K, Gronauer A, Horn H. Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM 1. Bioresour Technol, 100, 1675 (2009). http://dx.doi.org/10.1016/j.biortech.2008.09.030.
  17. Romano RT, Zhang R. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor. Bioresour Technol, 99, 631 (2008). http://dw.doi.org/10.1016/j.biortech.2006.12.043.
  18. Streeter MD, Dague RR, Main RE. Evaluation of a Field Application,Temperature-phased Anaerobic Digestion, Residuals and Solids Management. Proceeding of the Water Environment Federation 71st Annual Conference and Exposition, Water Environment Federation, Chicago, IL, 181 (1987).
  19. APHA AWWA WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. APAH, Washington, DC (1988).
  20. Owen WF, Stuckey DC, Healy JB Jr., Young LY, McCarty PL. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res, 13, 485 (1979). http://dx.doi.org/10.1016/0043-1354(79)90043-5.
  21. Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res, 37, 2467 (2003). http://dx.doi.org/10.1016/S0043-1354(03)00006-X.
  22. Momirlan M, Veziro lu T. Recent directions of world hydrogen production. Renewable Sustainable Energy Rev, 3, 219 (1999). http://dx.doi.org/10.1016/s1364-0321(98)00017-3.
  23. Lay JJ. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng, 74, 280 (2001). http://dx.doi.org/10.1002/bit.1118.
  24. Lee YJ, Miyahara T, Noike T. Effect of iron concentration on hydrogen fermentation. Bioresour Technol, 80, 227 (2001). http://dx.doi.org/10.1016/s0960-8524(01)00067-0.
  25. Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol, 58, 224 (2002). http://dx.doi.org/10.1007/s002530100814.
  26. Lehtomäki A, Huttunen S, Rintala JA. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl, 51, 591 (2007). http://dx.doi.org/10.1016/j.resconrec.2006.11.004.
  27. Gunaseelan VN. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy, 13, 83 (1997). http://dx.doi.org/10.1016/S0961-9534(97)00020-2.
  28. Lianhua L, Dong L, Yongming S, Longlong M, Zhenhong Y, Xiaoying K. Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. Int J Hydrogen Energy, 35, 7261 (2010). http://dx.doi.org/10.1016/j.ijhydene.2010.03.074.
  29. Chandra R, Takeuchi H, Hasegawa T, Kumar R. Improving biode-gradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43, 273 (2012). http://dx.doi.org/10.1016/j.energy.2012.04.029.
  30. Chandra R, Takeuchi H, Hasegawa T. Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy, 94, 129 (2012). http://dx.doi.org/10.1016/j.apenergy.2012.01.027.
  31. Pohl M, Mumme J, Heeg K, Nettmann E. Thermo-and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol, 124, 321 (2012). http://dx.doi.org/10.1016/j.biortech.2012.08.063.