수학을 가르치는 데 발현되는 교사 지식에 관한 선행연구 고찰

A Study on Mathematical Knowledge in Teaching

  • 투고 : 2015.10.12
  • 심사 : 2015.11.09
  • 발행 : 2015.11.30

초록

교사 지식의 본질에 대한 견해에 따라 교사 지식을 분석하는 목적과 방법이 결정되므로 교사 지식에 대한 관점을 면밀하게 고찰할 필요가 있다. 본 연구에서는 그동안 우리나라에 체계적으로 소개되지 않은 '수학을 가르치는 데 발현되는 교사 지식(Mathematical Knowledge in Teaching[MKiT])'의 개념, 특성, 분석 방식에 관하여 고찰하였다. MKiT의 관점에 따르면, 교사 지식이란 수학을 가르치는 데 사용되어야 의미가 부여되는 실천적 지식이다. 또한 수학을 가르치는 상황에서 여러 가지 교사 지식의 요소들이 상호작용하면서 교사 지식이 구성된다는 측면에서 교사 지식의 본질을 수업 맥락에 특화된 유기체로 여긴다. 이런 측면에서 교사 지식에 대한 분석은 주로 수업과 직접적으로 연계된 교사의 행위나 수업 상황을 관찰 분석하는 방식으로 이루어진다. 본 연구를 바탕으로 MKiT의 관점에서 이루어지는 교사 지식 연구가 더욱 활성화되기를 기대하며, 더 나아가 수학 교사 지식의 본질 및 분석 방식에 대한 면밀한 이해를 촉구하고 후속 연구에 대한 시사점을 제시하고자 한다.

A perspective of the nature of teacher knowledge has a significant impact on why and how we study teacher knowledge. The purpose of this study was to explore the mathematics knowledge in teaching (MKiT) in terms of meanings, characteristics, and analytic methods. MKiT regards teacher knowledge as practical knowledge that has meanings only when it is employed in teaching mathematics. Various components of teacher knowledge interact one another in teaching mathematics. Given this, teacher knowledge is regarded as an organism specific to teaching contexts and it needs to be analyzed by observing lessons or a teacher's actions related directly to the lessons. This paper is expected to induce research on teacher knowledge from the MKiT perspective and urge researchers to have a profound understanding of the nature and analytic methods of teacher knowledge. Some implications of future research are included.

키워드

참고문헌

  1. 방정숙.정유경(2013). 수학 수업에서 드러나는 교사 지식을 분석하기 위한 틀로서의 '교사지식의 사중주(Knowledge Quartet)', 수학교육, 52(4), 567-586.
  2. 정유경(2014). 한국 초등학교 수학 수업에서 발현되는 교사 지식의 분석틀 탐색. 한국교원 대학교 대학원 박사학위논문.
  3. Askew, M., Rhodes, V., Brown, M., Wiliam, D., & Johnson, D. (1997). Effective teachers of numeracy. London: King's College.
  4. Ball, D. L., Thames, M. H. C., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  5. Boaler, J. (2003). Studying and capturing the complexity of practice: The case of the dance of agency. In N. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceeding of the 27th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 3-16). Hawaii, USA: PME.
  6. Fennema, E. & Franke, L. M. (1992). Teachers' knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147-164). New York: Macmillan.
  7. Gouding, M., Rowland, T., & Batber, P. (2002). Does it matter? Primary teacher trainees' subject knowledge in mathematics. British Educational Research Journal, 28(5), 689-704. https://doi.org/10.1080/0141192022000015543a
  8. Hegarty, S. (2000). Teaching as a knowledge-based activity. Oxford Review of Education, 26(3-4), 451-465. https://doi.org/10.1080/713688541
  9. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.
  10. Hodgen, J. (2011). Knowing and identity: A situated theory of mathematics knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 27-42). New York: Springer.
  11. Johnson, T. L. (2011). Elementary preservice teachers' mathematical knowledge for teaching: Using situated case studies and educative experiences to examine and improve the development of MKT in teacher education. Unpublished doctoral dissertation, University of North Carolina.
  12. Kleve, B. (2009). Aspects of a teacher's mathematical knowledge on a lesson on fractions. In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 29(3), 67-72.
  13. Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven, CT: Yale University Press.
  14. Livy, S. (2010). A "Knowledge Quartet" used to identify a second-year pre-service teacher's primary mathematical content knowledge. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia (pp. 344-351). Fremantle, Australia: MERGA.
  15. Mason, J. & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of knowing-to act in the moment. Educational Studies in Mathematics, 38, 135-161. https://doi.org/10.1023/A:1003622804002
  16. Meredith, A. (1995). Terry's Learning: some limitations of Shulman's pedagogical content knowledge. Cambridge Journal of Education. 25, 175-187. https://doi.org/10.1080/0305764950250205
  17. Petrou, M. (2009). Adapting the knowledge quartet in the Cypriot mathematics classroom. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (pp. 2020-2029). Lyon: France.
  18. Petrou, M. & Goulding, M. (2011). Conceptualising teachers' mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 9-25). New York: Springer.
  19. Ponte, J. P. (1994). Mathematics teachers' professional knowledge (plenary conference). In J. P. Ponte & J. F. Matos (Eds.), Proceedings of the 18th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 195-210). Lisbon, Portugal: PME.
  20. Ponte, J. P. & Champman, O. (2006). Mathematics teachers' knowledge and practice. A. Gutierrez & P. Boero (Eds.), Handbook of research on psychology of mathematics education: Past, present and future (pp. 461-494). Rotterdam: Sense.
  21. Rowland, T. (2010). Frogs and ski-slopes: contrasting knowledge for elementary and secondary mathematics teaching. In A. Gagatsis, T. Rowland, A. Panaoura, & A. Stylianides (Eds.), Mathematics education research at the University of Cyprus and the University of Cambridge (pp. 185-201). Lefkosia: University of Cyprus.
  22. Rowland, T., Huckstep, P., & Thwaites, A. (2003). The knowledge quartet. Proceedings of the British Society for Research into Learning Mathematics, 23(3), 97-103.
  23. Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers' mathematics subject knowledge: The Knowledge Quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281. https://doi.org/10.1007/s10857-005-0853-5
  24. Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing primary mathematics teaching. London: SAGE.
  25. Rowland, T. & Ruthven, K. (2011). Introduction: mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 1-5). New York: Springer.
  26. Ruthven, K. (2011). Conceptualising mathematical knowledge in teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 83-96). New York: Springer.
  27. Shulman, L. (1986). Those who understand, knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.2307/1175860
  28. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  29. Thames, M. H. & Ball, D. L. (2010). What mathematical knowledge does teaching require? Knowing mathematics in and for teaching. Teaching Children Mathematics, 17(4), 220-225.
  30. Thwaites, A., Jared, L., & Rowland, T. (2011). Analysing secondary mathematics teaching with the Knowledge Quartet, Research in Mathematics Education, 13(2), 227-228. https://doi.org/10.1080/14794802.2011.585834
  31. Triosh, D. & Even, R. (2007). Teachers' knowledge of students' mathematical learning: An examination of commonly held assumptions. Mathematics knowledge in teaching seminar series: Conceptualizing and theorizing mathematical knowledge for teaching (Seminar 1) Cambridge, MA: University of Cambridge.
  32. Turner, F. (2012). Using the Knowledge Quartet to develop mathematics content knowledge: the role of reflection on professional development. Research in Mathematics Education 14(3), 253-271. https://doi.org/10.1080/14794802.2012.734972
  33. Turner, F. & Rowland, T. (2011). The Knowledge Quartet as an organising framework for developing and deepening teachers' mathematics knowledge. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 195-212). New York: Springer.
  34. William, J. (2007). Audit and evaluation of pedagogy: towards a sociocultural perspective. The Nuffield seminar series on mathematical knowledge in teaching. Retrieved from http://www.maths-ed.org.uk//mkit/Williams_Nuffield_MKiT_290907.pdf
  35. William, J. (2011). Audit and evaluation of pedagogy: towards a cultual-historical perspective. In T. Rowland & K. Ruthven (Eds.), Mathematical knowledge in teaching (pp. 43-64). New York: Springer.