Analysis on cognitive characteristics of factorizing process in the perspective of structure sense

구조감각의 관점에서 인수분해 과정의 인지적 특성 분석

  • Chang, Hyewon (Department of Mathematics Education, Seoul National University of Education) ;
  • Kang, Jeonggi (Gimhae Daegok Middle School)
  • Received : 2015.05.11
  • Accepted : 2015.11.16
  • Published : 2015.11.30


Factorization asks the recognition of the structure of polynomials, compared to polynomial expansion with process characteristic. Therefore it makes students experience a lot of difficulties. This study aims to figure out causes of the difficulties by identifying students' cognitive characteristics in factorizing in the perspective of 'structure sense'. To do this, we gave six factorizing problems of three types to middle school students and selected six participants as interviewees based on the test results. They were classified into two categories, structure sense and non-structure sense. Through this interview, we figured out the interviewee's cognitive characteristics and the causes of difficulty in the perspective of structure sense. Furthermore, we suggested some didactical implications for encouraging structure sense in factorizing by identifying assistances and obstacles for recognition of structures.


  1. 국립국어원 (2014). 표준국어대사전. National Institute of the Korean Language(2014). Standard Korean Dictionary.
  2. 김교희 (2013). 인수분해 단원에서 구조감각과 조작기술의 관계. 서강대학교 교육대학원 석사학위논문 Kim, K.H. (2013). Structure sense versus manipulation skills. Master's thesis, SGU.
  3. 김남희 (1994). 대수적 사고에 관한 고찰: 산술과의 관련성과 변수개념. 수학교육학연구 4(2), 189-204 Kim, N.H. (1994). Considerations on algebraic thinking; Arithmetic connection and variable concept. The Journal of Education Research in Mathematics 4(2), 189-204.
  4. 라우성, 백석윤 (2009). 초등수학에서 문장제의 수학적 구조 파악을 통한 문장제 이해 지도 방안. 한국초등 수학교육학회지 13(2), 247-268. Ra, W.S., & Paik, S.Y. (2009). Teaching the comprehension of word problems through their mathematical structure in elementary school mathematics. Journal of Elementary Mathematics Education in Korea 13(2), 247-268.
  5. 신은주 (2008). 중학교 3학년 학생들의 구조감각 실태조사 : 인수분해와 방정식 단원을 중심으로. 국교원대학교 대학원 석사학위논문 Sin, E.J. (2008). An survey on the structure sense performance of third grade middle school students. Master's thesis, KNUE.
  6. 서현정 (2009). 중학교 3학년 학생들의 이차방정식 해결 과정에서 나타나는 구조감각 분석. 한국교원대학교 대학원 석사학위논문 Seo, H.J. (2009). An analysis on structure sense of the 9th graders in solving quadratic equations. Master's thesis, KNUE.
  7. 이준열, 최부림, 김동재, 송영준, 윤상호, 황선미 (2009a). 중학교 수학 2. 서울: 천재교육. Lee, J.Y., Choi, B.R., Kim, D.J., Song, Y.J., Yoon, S.H., & Hwang, S.M. (2009a). Middle school mathematics 2. Seoul: Chunjae education.
  8. 이준열, 최부림, 김동재, 송영준, 윤상호, 황선미 (2009b). 중학교 수학 3. 서울: 천재교육. Lee, J.Y., Choi, B.R., Kim, D.J., Song, Y.J., Yoon, S.H., & Hwang, S.M. (2009b). Middle school mathematics 3. Seoul: Chunjae education.
  9. 이준열, 최부림, 김동재, 송영준, 윤상호, 황선미 (2009c). 중학교 수학 익힘책 3. 서울: 천재교육. Lee, J.Y., Choi, B.R., Kim, D.J., Song, Y.J., Yoon, S.H., & Hwang, S.M. (2009c). Middle school mathematics workbook 3. Seoul: Chunjae education.
  10. 전미혜, 황우형 (2015). 정보인식 유형과 인수분해 학습 방법: 대수막대와 공식 활용을 중심으로. 수학교육논문집 29(1), 111-130. Jeon, M.H., & Whang, W.H. (2015). Information recognition style and learning method for factorization: focusing on algeblocks and formula application. Communications of Mathematical Education 29(1), 111-130.
  11. 조영주, 김경미, 황우형 (2013). CAS 어플리케이션을 이용한 $X^n-1$의 인수분해 일반화 과정에 대한 질적 분석. 수학교육 52(3), 271-301. Cho, Y.J., Kim, K.M., & Whang, W.H. (2013). A qualitative analysis of students' factorization of $X^n-1$ using a CAS application. The Mathematical Education 52(3), 271-301.
  12. 조태근, 임성모, 정상권 ,이재학, 이성재 (2003). 중학교 수학 9-가 교사용지도서. 서울: 금성출판사. Jo, T.G., Lim, S.M., Jeong, S.G., Lee, J.H., Lee, S.J. (2003). Middle school mathematics 9-ga guidebook for teacher. Seoul: Kumsung.
  13. 최상기, 이지혜 (2009). 학교수학에서 인수분해의 지도. 수학교육 48(1), 81-91. Choi, S.K., & Lee, J.H. (2009). Teaching factorization in school mathematics. The Mathematical Education 48(1), 81-91.
  14. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, S. R., Trigueros, M., & Weller, K.(2014). APOS theory: A framework for research and curriculum development in mathematics education. New York: Springer
  15. Brousseau, G. (1998). Theorie des situations didactiques. Grenoble: La pensee sauvage
  16. Brousseau, G., Brousseau, N., & Warfield, V. (2014). Teaching fractions through situations: a fundamental experiment. Dordrecht: Springer
  17. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In E. Tall (Ed.), Advanced mathematical thinking. 95-123. Dordrecht: Kluwer
  18. Hoch, M. (2003). Structure sense. In M. A. Mariotti (Ed.), Proceedings of the 3rd Conference for European Research in Mathematics Education (CD). Bellaria, Italy.
  19. Hoch, M., & Dreyfus, T. (2005). Students' difficulties with applying a familiar formula in an unfamiliar context. In Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 145-152).
  20. Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: an unexpected result. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 305-312). Prague: Charles University.
  21. Hoch, M., & Dreyfus, T. (2009). Developing katy's algebraic structure sense. In Proceedings of CERME 6;
  22. Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational studies in mathematics 40(2), 173-196.
  23. Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22, 1-36.
  24. Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification - the case of algebra. Educational Studies in Mathematics 26(3), 191-228.