DOI QR코드

DOI QR Code

Changes of Furfural and Levulinic Acid Yield from Small-diameter Quercus mongolica Depending on Dilute Acid Pretreatment Conditions

약산 전처리 조건에 따른 소경 신갈나무 유래 푸르푸랄 및 레불린산의 함량 변화

  • Jang, Soo-Kyeong (Department of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Jeong, Han-Seob (Department of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Hong, Chang-Young (Department of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Kim, Ho-Yong (Department of Forest Biomaterials, North Carolina State University) ;
  • Ryu, Ga-Hee (Department of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Yeo, Hwanmyeong (Department of Forest Science, College of Agriculture and Life Science, Seoul National University) ;
  • Choi, Joon Won (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Science, College of Agriculture and Life Science, Seoul National University)
  • 장수경 (서울대학교 농업생명과학대학 산림과학부) ;
  • 정한섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 홍창영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김호용 ;
  • 류가희 (서울대학교 농업생명과학대학 산림과학부) ;
  • 여환명 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 국제농업기술대학원) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2015.08.13
  • Accepted : 2015.09.14
  • Published : 2015.11.25

Abstract

In this study, dilute acid pretreatment was operated using small-diameter Quercus mongolica for evaluating the yield change of furfural and levulinic acid depending on pretreatment factors. The dilute acid pretreatment was conducted depending on reaction temperature ($140-180^{\circ}C$), reaction time (10-30 min), and sulfuric acid concentration (0-2%, w/w). Then, glucose, XMG (xylose + mannose + galactose), furfural, and levulinic acid contents in the liquid hydrolyzate were measured and analyzed after pretreatment. Glucose content increased to 16.02% as reaction temperature, reaction time, and sulfuric acid concentration increased, but it decreased at the sulfuric acid concentration of 2% (reaction temperature: > $170^{\circ}C$, reaction time: > 20 min). On the other hand, reaction temperature had a strong influenced on XMG content, and XMG content decreased to 1.63% through increasing of reaction temperature and sulfuric acid concentration, but XMG content was less affected by changes of reaction time. Furfural content increased with the increase of reaction temperature, reaction time, and sulfuric acid concentration, and maximum furfural content was 7.61% (reaction temperature: $180^{\circ}C$, reaction time: 20 min, sulfuric acid concentration: 1%) based on a weight of raw material, while furfural content was dropped in more severe condition than in maximum furfural content condition. Levulinic acid content also increased with higher reaction temperature, reaction time, and sulfuric acid concentration. Especially, the sharp increase of levulinic acid content was observed above $170^{\circ}C$, and maximum levulinic acid content was 10.98% (reaction temperature: $180^{\circ}C$, reaction time: 30 min, sulfuric acid concentration: 2%). However, less than 1% of furfural and levulinic acid content was obtained in non-acidic catalyst condition that in whole conditions of reaction temperature and reaction time.

본 연구에서는 국산 소경 신갈나무를 이용하여 약산 전처리를 실시하고, 당으로부터 변환된 푸르푸랄 및 레불린산의 함량 변화를 평가하였다. 약산 전처리는 반응온도($140-180^{\circ}C$), 반응시간(10-30분), 황산 촉매 농도(0-2%, w/w)에 따라 수행하였고, 전처리 후 액상 내 글루코오스, XMG (자일로오스 + 만노오스 + 갈락토오스), 푸르푸랄, 레불린산의 함량을 측정/분석하였다. 글루코오스는 반응온도의 상승, 반응시간과 황산 촉매 농도의 증가에 의해 그 함량이 높아져 최대 16.02%까지 나타났으나, 황산 촉매 농도 2% (반응온도 $170^{\circ}C$ 이상, 반응시간 20분 이상)에서 함량이 감소하였다. 한편, XMG 함량은 반응온도의 영향을 크게 받았고, 반응온도와 황산 촉매 농도의 증가에 따라 1.63%까지 감소하 였으며, 반응시간의 증가에 의한 함량변화는 적었다. 푸르푸랄 함량은 반응온도, 반응시간, 황산 촉매 농도 증가에 따라 높아져 초기시료 중량 대비 최대 7.61% (반응온도 $180^{\circ}C$, 반응시간 20분, 1% 황산 촉매 농도)로 나타났으나, 전처리 조건이 최대 푸르푸랄 함량 조건보다 가혹해지면서 감소하는 경향이 발생하였다. 레불린산 함량은 반응온도, 반응시간, 황산 촉매 농도가 증가함에 따라 높아졌고, 특히 반응온도 $170^{\circ}C$ 이상에서 급격한 함량 증가를 확인하였으며, 최대 10.98% (반응온도 $180^{\circ}C$, 반응시간 30분, 2% 황산 촉매 농도)로 나타났다. 반면 황산 촉매를 투입하지 않았을 경우 모든 반응온도, 반응시간 조건에서 푸르푸랄 및 레불린산 함량은 1% 미만으로 나타났다.

Keywords

References

  1. Carroll, A., Somerville, C. 2009. Cellulosic biofuels. Annual review of plant biology 60: 165-182. https://doi.org/10.1146/annurev.arplant.043008.092125
  2. Chandra, R.P., Bura, R., Mabee, W., Berlin, A., Pan, X., Saddler, J. 2007. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? in: Biofuels. Springer: 67-93.
  3. Chang, C., Cen, P., Ma, X. 2007. Levulinic acid production from wheat straw. Bioresource technology 98(7): 1448-1453. https://doi.org/10.1016/j.biortech.2006.03.031
  4. Chundawat, S.P., Beckham, G.T., Himmel, M.E., Dale, B.E. 2011. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annual review of chemical and biomolecular engineering 2: 121-145. https://doi.org/10.1146/annurev-chembioeng-061010-114205
  5. De Jong, W., Marcotullio, G. 2010. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. International journal of chemical reactor engineering 8(1).
  6. Girisuta, B., Danon, B., Manurung, R., Janssen, L. P. B. M., Heeres, H. J. 2008. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource technology 99(17): 8367-8375. https://doi.org/10.1016/j.biortech.2008.02.045
  7. Girisuta, B., Dussan, K., Haverty, D., Leahy, J. J., Hayes, M. H. B. 2013. A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chemical Engineering Journal 217: 61-70. https://doi.org/10.1016/j.cej.2012.11.094
  8. Hendriks, A., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology 100(1): 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  9. Karimi, K., Kheradmandinia, S., Taherzadeh, M.J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy 30(3): 247-253. https://doi.org/10.1016/j.biombioe.2005.11.015
  10. Klingler, F.D., Ebertz, W. 2003. Oxocarboxylic acids. Ullmann's Encyclopedia of Industrial Chemistry.
  11. Lee, Y., Iyer, P., Torget, R.W. 1999. Dilute-acid hydrolysis of lignocellulosic biomass. in: Recent Progress in Bioconversion of Lignocellulosics. Springer: 93-115.
  12. Lopez, F., Garcia, M.T., Feria, M.J., Garcia, J.C., de Diego, C.M., Zamudio, M.A., Diaz, M.J. 2014. Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chemical Engineering Journal 240: 195-201. https://doi.org/10.1016/j.cej.2013.11.073
  13. Mandalika, A., Runge, T. 2012. Enabling integrated biorefineries through high-yield conversion of fractionated pentosans into furfural. Green Chemistry 14(11): 3175-3184. https://doi.org/10.1039/c2gc35759c
  14. Martin, C., Garcia, A., Schreiber, A., Puls, J., Saake, B. 2015. Combination of water extraction with dilute-sulphuric acid pretreatment for enhancing the enzymatic hydrolysis of Jatropha curcas shells. Industrial Crops and Products 64: 233-241. https://doi.org/10.1016/j.indcrop.2014.09.040
  15. Mes-Hartree, M., Saddler, J. 1983. The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic hydrolysis of cellulose. Biotechnology Letters 5(8): 531-536. https://doi.org/10.1007/BF01184944
  16. Mukherjee, A., Dumont, M.J., Raghavan, V. 2015. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass and Bioenergy 72: 143-183. https://doi.org/10.1016/j.biombioe.2014.11.007
  17. Olsson, L., Hahn-Hagerdal, B. 1996. Fermentation of lignocellulosic hydrolyzates for ethanol production. Enzyme and Microbial Technology 18(5): 312-331. https://doi.org/10.1016/0141-0229(95)00157-3
  18. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L. 2006. The path forward for biofuels and biomaterials. science 311(5760): 484-489. https://doi.org/10.1126/science.1114736
  19. Rajan, K., Carrier, D.J. 2014. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy 62: 222-227. https://doi.org/10.1016/j.biombioe.2014.01.013
  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2006. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden, CO: National Renewable Energy Laboratory.
  21. Taherzadeh, M.J., Niklasson, C., Liden, G. 1997. Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae Chemical Engineering Science 52(15): 2653-2659. https://doi.org/10.1016/S0009-2509(97)00080-8
  22. Tao, L., Aden, A., Elander, R.T., Pallapolu, V.R., Lee, Y., Garlock, R.J., Balan, V., Dale, B.E., Kim, Y., Mosier, N.S. 2011. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource technology 102(24): 11105-11114. https://doi.org/10.1016/j.biortech.2011.07.051
  23. Werpy, T.A., Holladay, J.E., White, J.F. 2004. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Laboratory (PNNL). Richland. WA (US).
  24. Wyman, C.E., Balan, V., Dale, B.E., Elander, R.T., Falls, M., Hames, B., Holtzapple, M.T., Ladisch, M.R., Lee, Y., Mosier, N. 2011. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource technology 102(24): 11052-11062. https://doi.org/10.1016/j.biortech.2011.06.069
  25. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource technology 96(18): 1959-1966. https://doi.org/10.1016/j.biortech.2005.01.010
  26. Yang, M., Kuittinen, S., Zhang, J., Keinanen, M., Pappinen, A. 2013. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars. Bioresource technology 146: 444-450. https://doi.org/10.1016/j.biortech.2013.07.107

Cited by

  1. Energy Efficiency of Fluidized Bed Drying for Wood Particles vol.44, pp.6, 2016, https://doi.org/10.5658/WOOD.2016.44.6.821