DOI QR코드

DOI QR Code

파형역산 기법을 이용한 수중표적 탐지 연구

A Study on the Underwater Target Detection Using the Waveform Inversion Technique

  • 투고 : 2015.09.23
  • 심사 : 2015.10.01
  • 발행 : 2015.11.30

초록

중주파수 및 고주파수 대역을 이용한 근거리 수중표적 탐지와 식별 기술은 이미 성숙단계에 있으나, 수중 위협세력의 은닉화 및 고속화에 따른 저주파수 대역을 이용한 원거리 탐지 요구가 새롭게 대두되고 있다. 본 논문에서 소개할 파형역산 기술은 최근 국내외 석유탐사 관련 학계 및 업계에서 매우 각광받는 최신 기술로, 저주파수 대역을 이용하여 해저 수 킬로미터 이상의 해저 지층을 고해상도로 구축하는 수치해석 기법이다. 이러한 파형역산 기술을 응용하여 작전 해역에서의 해저지층을 영상화하는 동시에, 수중에 위치하는 인공표적의 탐지 가능성을 확인하였다. 본 제안 기술은 인공표적의 형상뿐만 아니라 음파속도 등의 물성정보를 정확하게 추정할 수 있기 때문에 오탐지 확률을 획기적으로 줄일 수 있으리라 기대된다.

A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.

키워드

참고문헌

  1. R. P. Haffa Jr and J. H. Patton Jr, "Analogues of Stealth," Northrop Grumman Corp., Analysis Center Papers, 2002.
  2. Y. S. Seo, I. B. Ham, and W. J. Jung, "A Study on the Echo Reduction Performance of Underwater Acoustic Material" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 24, 868-875 (2014). https://doi.org/10.5050/KSNVE.2014.24.11.868
  3. B. K. Ahn, S. W. Jung, J. H. Kim, Y. R. Jung, and S. B. Kim, "Experimental Study on Artificial Supercavitation of the High Speed Torpedo" (in Korean), J. KIMST 18, 300-308 (2015).
  4. K. W. Ng, "Overview of the ONR Supercavitating High- Speed Bodies Program," in Collection of Tech. Papers of AIAA GNC Conference and Exhibit, 3088-3091 (2006).
  5. J. Y. Hwang and J. H. Kim, Modern Navy Surface Ship (Military Study, Seoul, 2007), pp.1-384.
  6. J. Virieux and S. Operto, "An Overview of Full-Waveform Inversion in Exploration Geophysics" Geophys. 74, WCC1- WCC26 (2009). https://doi.org/10.1190/1.3238367
  7. A. Tarantola, "Inversion of Seismic Reflection Data in the Acoustic Approximation," Geophys. 49, 1259-1266 (1984). https://doi.org/10.1190/1.1441754
  8. Y. J. Choi, S. R. Shin, J. H. Ha, W. Chung, and W. S. Kim, "Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey" (in Korean), Geophysics and Geophysical Exploration 17, 231-241 (2014). https://doi.org/10.7582/GGE.2014.17.4.231
  9. C. Shin and Y. H. Cha, "Waveform Inversion in the Laplace- Fourier Domain," Geophys. J. Int. 177, 1067-1079 (2009). https://doi.org/10.1111/j.1365-246X.2009.04102.x
  10. R. W. Graves, "Simulating Seismic Wave Propagation in 3D Elastic Media Using Staggered-Grid Finite Differences," Bull. Seismol. Soc. Am. 86, 1091-1106 (1996).
  11. T. Ha, W. Chung, and C. Shin, "Waveform Inversion Using a Back-Propagation Algorithm and a Huber Function Norm," Geophys. 74, R15-R24 (2009). https://doi.org/10.1190/1.3112572
  12. C. Shin, S. Jang, and D. J. Min, "Improved Amplitude Preservation for Prestack Depth Migration by Inverse Scattering Theory," Geophys. Prosp. 49, 592-606 (2001). https://doi.org/10.1046/j.1365-2478.2001.00279.x