DOI QR코드

DOI QR Code

태양 에너지 수집형 센서 네트워크에서 모바일 싱크를 지원하기 위한 클러스터 기반 에너지 인지 데이터 공유 기법

Cluster-based Energy-aware Data Sharing Scheme to Support a Mobile Sink in Solar-Powered Wireless Sensor Networks

  • 이홍섭 (숭실대학교 정보통신공학과) ;
  • 이준민 (숭실대학교 융합소프트웨어학과) ;
  • 김재웅 (숭실대학교 전자공학과) ;
  • 노동건 (숭실대학교 스마트시스템소프트웨어학과)
  • 투고 : 2015.08.17
  • 심사 : 2015.09.21
  • 발행 : 2015.11.15

초록

배터리 기반 무선 센서 네트워크(Wireless Sensor Networks, WSN)는 고정된 자원으로 인해 제한된 수명을 갖지만, 태양 에너지 기반 WSN은 에너지가 주기적으로 계속 공급되어, 하드웨어적인 문제가 없는 한 영원히 동작할 수 있다. 한편, 모바일 싱크를 활용한 기법은 데이터 전송 경로를 단축하여 센서의 에너지 소모량을 감소시킬 수 있지만, 비효율적인 싱크의 이동은 에너지 낭비를 초래할 수 있다. 이에 따라 모바일 싱크와 클러스터링을 혼합한 기법들이 제안되고 있지만, 클러스터링은 에너지 불균형 문제로 인한 네트워크 수명 단축을 야기한다. 따라서 본 연구에서는 태양 에너지 기반 WSN에서 모바일 싱크를 효과적으로 지원하기 위한 CE-DSS를 제안한다. CE-DSS는 에너지를 효율적으로 활용해 각 노드의 정전시간을 최소화하면서, 각 클러스터의 데이터를 공유한다. 이로 인해 네트워크 신뢰도가 향상되고, 모바일 싱크의 이동 거리가 단축되어 싱크의 에너지 사용량이 감소된다.

In contrast with battery-based wireless sensor networks (WSNs), solar-powered WSNs can operate for a longtime assuming that there is no hardware fault. Meanwhile, a mobile sink can save the energy consumption of WSN, but its ineffective movement may incur so much energy waste of not only itself but also an entire network. To solve this problem, many approaches, in which a mobile sink visits only on clustering-head nodes, have been proposed. But, the clustering scheme also has its own problems such as energy imbalance and data instability. In this study, therefore, a cluster-based energy-aware data-sharing scheme (CE-DSS) is proposed to effectively support a mobile sink in a solar-powered WSN. By utilizing the redundant energy efficiently, CE-DSS shares the gathered data among cluster-heads, while minimizing the unexpected black-out time. The simulation results show that CE-DSS increases the data reliability as well as conserves the energy of the mobile sink.

키워드

참고문헌

  1. S. Sudevalayam and P. Kulkarni, "Energy Harvesting Sensor Nodes: Survey and Implications," Journal of IEEE Communications Surveys and Tutorials, Vol. 13, No. 3, pp. 443-461, Sept. 2011. https://doi.org/10.1109/SURV.2011.060710.00094
  2. H. Yoo, M. Shim, and D. Kim, "Dynamic Duty-cycle Scheduling Scheme for Energy-harvesting Wireless Sensor Networks," Journal of IEEE Communications Letter, Vol. 16, No. 2, pp. 202-204, Feb. 2012. https://doi.org/10.1109/LCOMM.2011.120211.111501
  3. R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, "Energy Harvesting for Autonomous Wireless Sensor Networks," Journal of IEEE Solid-State Circuits Magazine, Vol. 2, No. 2, pp. 29-38, Jun. 2010. https://doi.org/10.1109/MSSC.2010.936667
  4. J. Luo, J. Panchard, M. Piorkowski, M. Grossglauser, and J. P. Hubaux, "MobiRoute: Routing towards a Mobile Sink for Improving Lifetime in Sensor Networks," Proc. of the IEEE International Conference on Distributed Computing in Sensor Systems, pp. 480-497, 2006.
  5. S. R. Gandham, M. Dawande, R. Prakash and S. Venkatesan, "Energy Efficient Schemes for Wireless Sensor Networks with Multiple Mobile Base Stations," Proc. of the Global Telecommunications Conference, pp. 377-381, 2003.
  6. D. Mamurjon, I. Ha, and B. Ahn, "A Mobile Data Gathering Method for Clustered Wireless Sensor Networks," Journal of KISS: Information Networking, Vol. 41, No. 3, pp. 138-144, Mar. 2014. (in Korean)
  7. P. Santi, "Topology Control in Wireless Ad hoc and Sensor Networks," Journal of ACM Computing Surveys (CSUR), Vol. 37, No. 2, pp. 164-194, Jun. 2005. https://doi.org/10.1145/1089733.1089736
  8. N. Li, J. C. Hou, and L. Sha, "Design and Analysis of an MST-based Topology Control Algorithm," Proc. of the 22nd Joint Conference of the IEEE Computer and Communications, pp. 1702-1712, 2003.
  9. R. Ramanathan, and R. Rosales-Hain, "Topology Control of Multihop Wireless Networks Using Transmit Power Adjustment," Proc. of the 19th Joint Conference of the IEEE Computer and Communications Societies, pp. 404-413, 2000.
  10. I. Stojmenovic. Handbook of Sensor Networks : Algorithms and Architectures, Wiley-Interscience, Hoboken, 2005.
  11. C. Alippi, G. Anastasi, M. D. Francesco, and M. Roveri, "Energy Management in Wireless Sensor Networks with Energy-hungry Sensors," Journal of IEEE Instrumentation & Measurement Magazine, Vol. 12, No. 2, pp. 16-23, Apr. 2009.
  12. A. Kansal, J. Hsu, S. Zahedi, M. B. Srivastava, "Power Management in Energy Harvesting Sensor Networks," Journal of ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, pp. 1-38, Sep. 2007. https://doi.org/10.1145/1210268.1216577
  13. X. Jiang, J. Polastre, and D. Culler, "Perpetual environmentally powered sensor networks," Proc. of the 4th International Symposium on Information Processing in Sensor Networks, pp. 463-468, 2005.
  14. A. Willig, R. Shah, J. Rabaey, and A. Wolisz, "Altruists in the PicoRadio Sensor Network," Proc. of the 4th IEEE International Workshop on Factory Communication Systems, pp. 175-184, 2002.
  15. T. Voigt, A. Dunkels, J. Alonso, H. Ritter, and J. Schiller, "Solar-aware Clustering in Wireless Sensor Networks," Proc, of the 9th International Symposium on Computers and Communications, pp. 238-243, 2004.
  16. T. Voigt, H. Ritter, and J. Schiller, "Utilizing Solar Power in Wireless Sensor Networks," Proc. of the 28th IEEE International Conference on Local Computer Networks, pp. 416-422, 2003.
  17. W. Heinzelman, "Application-Specific Protocol Architectures for Wireless Sensor Network," Journal of IEEE Transactions on Wireless Communications, Vol. 1, No. 4, pp. 660-670, Oct. 2000.
  18. C. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed Diffusion: a Scalable and Robust Communication Paradigm for Sensor Networks," Proc. of the 6th ACM International Conference on Mobile Computing and Networking, pp. 56-67, 2000.
  19. A. Kansal, and M. B. Srivastava, "An Environmental Energy Harvesting Framework for Sensor Networks," Proc. of the International Symposium on Low Power Electronics and Design, pp. 481-486, 2003.
  20. D. Noh, D. Lee, and H. Shin, "QoS-Aware Geographic Routing for Solar-Powered Wireless Sensor Networks," Journal of Institute of Electronics, Information and Communication Engineers Transactions on Communications, Vol. 90-B, No. 12, pp. 3373-3382, Jan. 2007.
  21. D. Noh, I. Yoon, H. Shin, "Low-Latency Geographic Routing for Asynchronous Energy-Harvesting WSNs," International Journal of Networks, Vol. 3, No. 1, pp. 78-85, Jan. 2008.
  22. D. Noh and J. Hur, "Using a Dynamic Backbone for Efficient Data Delivery in Solar-powered WSNs," Journal of Network and Computer Applications, Vol. 35, No. 4, pp. 1277-1284, Jan. 2012. https://doi.org/10.1016/j.jnca.2012.01.012
  23. Y. Yang, L. Wang, DK. Noh, HK. Le, and T. Abdelzaher, "SolarStore: Enhancing Data Reliability in Solar-powered Storage-centric Sensor Networks," Proc. of the 7th International Conference on Mobile Systems, Applications, and Services, pp. 333-346, 2009.
  24. H. Steinhaus, "Sur la Division des Corps Materiels en arties," Bulletin de l'Academic. Polonaise des Sciences, Vol. 4, No. 12, pp. 801-804, 1956.
  25. O. Younis and S. Fahmy, "HEED: A Hybrid, Energy-efficient, Distributed Clustering Approach for Ad Hoc Sensor Networks," Journal of IEEE Transactions on Mobile Computing, Vol. 3, No. 4, pp. 366-379, Oct.-Dec. 2004. https://doi.org/10.1109/TMC.2004.41
  26. R.Wu, M. Chen, Y. Su, and H. J. Siddiqui, "A Novel Location-Based Routing Algorithm for Energy Balance in Wireless Sensor Networks," Proc. of the 1st International Conference on Communications and Mobile Computing, pp. 568-572, 2009.
  27. Y. Cho, S. Woo, and S. Lee, "IDE-LEACH Protocol for Trust and Energy Efficient Operation of WSN Environment," Journal of Korea Infomation and Communications Society, Vol. 38, No. 10, pp. 801-807, Sept. 2013. (in Korean)
  28. J. Yi, M. Kang, and D. Noh, "SolarCastalia: Solar Energy Harvesting Wireless Sensor Network Simulator," International Journal of Distributed Sensor Networks, Vol. 2015, pp. 1-10, 2015.