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Abstract

In this paper, we analyze the polio incidence data based on the Poisson autoregres-
sive models, focusing particularly on change-point detection. Since the data include
some strongly deviating observations, we employ the robust cumulative sum (CUSUM)
test proposed by Kang and Song (2015) to perform the test for parameter change. Con-
trary to the result of Kang and Lee (2014), our data analysis indicates that there is no
significant change in the case of the CUSUM test with strong robustness and the same
result is obtained after ridding the polio data of outliers. We additionally consider the
comparison of the forecasting performance. All the results demonstrate that the robust
CUSUM test performs adequately in the presence of seemingly outliers.

Keywords: Minimum density power divergence estimator, Poisson autoregressive model,
robust parameter change test, the polio incidence data.

1. Introduction

In recent years, time series of counts are commonly observed in real-world applications.
The fields include insurance industry (e.g., the number of claim counts), economics (e.g., the
number of transactions of some stock), engineering (e.g., the number of traffic accidents) and
epidemiology (e.g., the number of people with a certain disease). For a general review of time
series of counts, we refer to Jung et al. (2006) and Weif} (2008). It is widely recognized that
time series models applied to various fields such as finance often undergo parameter changes.
Since such changes can lead to an invalid inference, the change point problem has attracted
much attention from many authors such as Lee and Lee (2007), Aue and Horvéth (2013) and
Kitabo and Kim (2015). For historical background and general review, Csorgé and Horvath
(1997) and Chan and Gupta (2000), and the articles cited therein. As Kang and Lee (2014)
addressed, integer-valued time series (particularly in the field of epidemiology) can also
undergo a significant change in parameters due to, for example, changes in the quality of
health care and the state of patients’ health. However, only recently have researchers begun
to study on the detection of parameter changes for integer-valued time series, Kang and Lee
(2014) and Doukhan and Kengne (2015).
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It is also well known that outliers affect parameter estimations and test procedures. In
time series models, this problem has been investigated by many authors. See, for example,
Tsay (1988) and Lee and Park (2001). However, to the best of our knowledge, few works are
devoted to integer-valued time series models. Recently, Kang and Song (2015) proposed the
robust cumulative sum (CUSUM) test for detecting change points in Poisson autoregressive
models and demonstrated that the proposed test can be a useful tool in testing for parameter
change when outliers are suspected to contaminate data.

The objective here is to employ the robust CUSUM test to analyze the monthly number
of polio cases in the US from January 1970 to December 1983. The polio data is one of the
most famous data sets in the context of time series of counts. The data are published by
the United States (US) Centers for Disease Control and consist of 168 observations with
some strongly deviating data points. This data set has been previously studied by many
researchers, including Zeger (1988), Davis et al. (2000) and Jung and Tremayne (2011).
Recently, Kang and Lee (2014) performed the CUSUM test to detect change points in this
data based on Poisson autoregressive models. They showed that there exist a significant
change in parameter, which may be because the outliers affect the test procedure. In this
study, we employ the robust CUSUM test of Kang and Song (2015) to analyze the polio
data, and compare with the CUSUM test of Kang and Lee (2014).

This paper is organized as follows. In Section 2, we review the robust CUSUM test for
Poisson autoregressive models introduced by Kang and Song (2015) and its asymptotic
properties. In Section 3, we apply the proposed test for analyzing the polio data, and compare
the one-step-ahead forecasting performance of the several models. Section 4 concludes the

paper.

2. Robust CUSUM test for Poisson autoregressive model

The Poisson autoregressive model is defined by
X¢|Fio1 ~ Poisson(A), At = fo(Ai—1,X¢—1) forallt € Z, (2.1)

where fp is a known positive function on [0, 00) x Ny, Ny = NU {0}, depending on unknown
parameter §# € © C R?, and F;_; is the o-field generated by {X; 1, X;_o,...}. Denote the
true value of 6 by 6y. In what follows, it is assumed that the function fy satisfies the following
condition:

Forall € ©, |fo(A, z)— fo(N,2")| < k1|A=N|+ka|z—2'| for all \, N >0 and z,2’ €
Ny, where k1 and ko are nonnegative real numbers with K := k1 + ko < 1.

Under the above condition, there is a strictly stationary and ergodic solution for model
(2.1) and any order moments of X; and A; are finite (Neumann, 2011; Doukhan et al., 2012).

In particular, model (2.1) with a linear specification is referred to as the INGARCH(1,1)
model, such that,

Xi|Fi—1 ~ Poisson(At), A =w+ar_1+bX;_1 forallteZ,

where § = (w,a,b)” and w > 0,a > 0,b > 0. Ferland et al. (2006) showed that a strictly
stationary ergodic solution exists and all moments of X; and \; are finite if a+b < 1. Count
time series data are often overdispersed, that is, the variance is bigger than the mean of data.
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This model is broadly used to analyze dependent count data with overdispersion because of
the fact that F(X;) < Var(X;).

In this paper, we consider model (2.1) with 6 replaced by 6, and set up the null and
alternative hypotheses as follows:

Hy:0,=---=0, =0 vs.
Hl:notHO.

To perform the above test, Kang and Lee (2014) proposed the CUSUM test based on
maximum likelihood estimator (MLE):

where ék is the MLE of 6y based on Xq,--- Xy for k = 1,--- ,n and I,, is a consistent
estimator of the Fisher information matrix. However, it is well known that the MLE and
the test procedure based on MLE are strongly influenced when the data are contaminated
by outliers.

As a robust estimator, Basu et al. (1998) proposed the minimum density power divergence
estimator (MDPDE) and demonstrated that the MDPDE has strong robustness properties,
with low losses in asymptotic efficiency relative to the MLE. Consequently, for model (2.1)
in the presence of outliers, we consider the robust CUSUM test, which is introduced by Kang
and Song (2015):

pmdpde _ kQé 0 T -1 f
n - 121]?%(”;( a,k — a,n) afly Ja( a,k — (x,n)v
where émk is the MDPDE of 6y based on Xq,--- X} for k = 1,--- ,n. Here, Ka and ja
are consistent estimators of K, and J,, which are those defined in (2.3), respectively. More
specifically, the MDPDE is obtained by

fo.n = argmin Z lo+(0),

beo 1
where
- 1+a < . a
oo A \Y 1 —Ae Y Xt
- Z ¢ ')\t —<1+) % ,a>0,
lat(0) =9 =0 Y & X! (2.2)
At — thog:\t + log(X,!) ,a=0,
and ;\t are defined recursively by S\t = fg(;\t_l, X;_1) with arbitrarily chosen \1. Note that
1 Olo.1(00) Ol 1(00) 1 0?10.+(00)
K, := E . . d = — E : 2.
T Urar ( 90 06T and o= =70 B e )0 (29

where [, +(0) is defined by substituting A; for \; in (2.2). As consistent estimators of K,
and J,, we consider to use

1 1= 0lai(0nn) Olai(Oan) . 1T 1 ai(0a.)
(1+0¢)2n; 90 gt nd o= (I+a)n & 99007

Ky =
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Assuming suitable regularity conditions, Kang and Song (2015) showed that under Hy,

d
Trdrde =5 sup |By(s)|?,
0<s<1

where B is a standard d-dimensional Brownian bridge, and Hj is rejected if Tmdrde i Jarge.
They demonstrated, via a simulation study, that 7"™%% is valid when outliers are involved
in observations.

Remark. The tuning parameter o controls the trade-off between the efficiency and robust-
ness of the MDPDE. Note that the MDPDE with o = 0 is exactly the same as the MLE,
which is fully efficient. For o > 0, the MDPDE becomes more robust against outliers but
less efficient as « increases (Basu et al., 1998).

3. Real data analysis

In this section, we apply the robust CUSUM test in Section 2 to analyze the polio data.
The top row of Figure 1 provides the time series plot of the polio data, which shows that
there are some strongly deviating data points. The empirical mean and variance of the data
are 1.33 and 3.5, respectively. This suggests that there is some overdispersion in the data.

3.1. Robust CUSUM test

We focus on investigating whether a parameter change exists in this time series. First, we
fit an INGARCH(1,1) model to the polio data. In order to test for a parameter change, Kang
and Lee (2014) performed T and obtained T/™¢ = 5.859, which indicates rejection of the
null hypothesis at the nominal level 0.05. 7"™¢ has a maximum at ¢ = 35, which corresponds
to November 1972. In this study, 77"%4¢ is performed at the nominal level 0.05. The result
is presented in “the polio data” of Table 3.1. It can be seen that the null hypothesis is not
rejected in the case of T/™P4¢ with large . This means that the test procedure based on
MDPDE with large « seems to be not affected by suspected outliers because of the strong
robustness of the MDPDE.

To remove the effect of outliers, we clean the polio data by using the approach introduced
by Fokianos and Fried (2010), which is designed for the stepwise detection, classification, and
elimination of multiple intervention effects. The plot of the clean polio data is at the bottom
of Figure 3.1. After completing the data cleaning procedure, we also fit an INGARCH(1,1)
model to the clean polio data and perform T7¢ and T4 at the nominal level 0.05.
From “the clean polio data” of Table 3.1, there is no significant change in all the cases,
which is in agreement with that of T7%4¢ with large . All these results demonstrate that
outliers apparently seem to affect test procedures and thus the robust CUSUM test performs
adequately in the presence of seemingly outliers.

Table 3.1 T/¢ and TP fter fitting the INGARCH model for the polio data and
for the clean polio data

pmie TP%e with o
n 0.1 0.2 0.3 05 1.0
the polio data 5.859% 6.546*  4.167* _ 3.840F _ 2.909  2.781

the clean polio data 2.016 2.019 1.891 1.727 1.428 1.341
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Figure 3.1 Plots of the polio data (top) and the clean polio data (bottom)

3.2. Comparison of forecasting performance

In Section 3.1, the robust CUSUM test has provided the different results according to the
«, for the polio data. In order to study whether there is a significant change in parameters
or not, we additionally consider the comparison of the forecast performance of the ordinary
INGARCH model and the INGARCH model with a break. The estimations of the models
can be carried out in MLE and MDPDE. The data set is divided into an in-sample period
comprising the first 118 observations and an out-of-sample period composed by the remaining
50 observations, which will be used to assess the forecasting abilities.

© —=— observed
- predicted_MLE
+-  predicted_ MDPDE

the polio data
3
L

T T T T T
1980 1981 1982 1983 1984
time

Figure 3.2 The observed and predicted values for the ordinary INGARCH model
based on MLE and MDPDE
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Figure 3.3 The observed and predicted values for the INGARCH model with a break
based on MLE and MDPDE

First, we consider the ordinary INGARCH(1,1) model. Let (i, a,b) is the MLE of the
INGARCH model by using the in-sample data. For forecasting purposes, we calculate the
one-step-ahead forecasts error which is obtained from the estimated model, as follows

et:Xt_Xt

where 5\t are defined recursively by ;\t =W+ dj\t_l + BXt_l and ;\1 = 0. Comparison of
the predictive performance among the models is implemented by calculating the forecasting
accuracy measures. There are two measures of mean square error (MSE) and mean absolute
error (MAE), which are defined by

168 o 168
MSE = Zt=119% 1| MAE = £=t=119 let]
50 50 ’

Whereas MSE can lead to spurious inference in the presence of outliers, MAE is inherently
robust to outliers (Park, 2002). Thus, in this paper, we compute not only MSE but also MAE
to evaluate the predictive performances. In the same way, we calculate two measures by using
MDPDE with « = 0.5. The result is presented in “ordinary INGARCH model” of Table 3.2.

We now consider the INGARCH model with a break at ¢ = 35. We obtain the MLE and
the MDPDE of the INGARCH model by using the subseries 36 < ¢ < 118, and then compute
MSEs and MAEs respectively. The result is presented in “INGARCH model with a break” of
Table 3.2. Figure 3.2 and Figure 3.3 are the observed versus predicted plots in out-of-sample
period for two models. In terms of MLE, the INGARCH model with a break is superior to
the ordinary INGARCH model on both two measures. Furthermore, all the models based on
MDPDE outperform the models based on MLE, and perform similarly in forecasting whether
a parameter change is considered or not. These may be because outliers damage the MLE
and the forecasting performance of the model based on MLE, while the MDPDE is robust
to outliers. It is noteworthy that in all of forecasting measures, the ordinary INGARCH
model based on MDPDE is superior to the INGARCH model with a break based on MLE.
Although not reported here, we could see that the results obtained by other « except 0.1
are similar to the case of a = 0.5.
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Overall, our findings suggest that when outliers are involved in observations, the ordinary
INGARCH model based on MDPDE has a tendency to improve substantially in forecasting
over the INGARCH models considering a parameter change.

Table 3.2 Out-of-sample forecasting results after fitting the INGARCH model with and
without a break based on MLE and MDPDE

ordinary INGARCH Model INGARCH Model with a break
MLE MDPDE MLE MDPDE
MSE 1.528 1.420 1.442 1.406
MAE 0.974 0.885 0.934 0.893

4. Conclusion

The parameter estimations and the test statistics can be affected in the presence of extreme
values. This motivation allowed the paper to use the robust CUSUM test, which can reduce
the impact of outliers. In real data analysis, we employed the robust CUSUM test after
fitting Poisson autoregressive models to the polio data. The result of the CUSUM test based
on MLE indicated a significant change, while there is no significant change in the case of the
CUSUM test based on MDPDE with large a.. Furthermore, there is also no significant change
in the clean polio data. Thus, the robust CUSUM test performs adequately in the presence of
outliers. Additionally, through the comparison of forecasting performance, we demonstrated
that substantial improvement of forecasts may indeed be achieved by the approach of the
robust estimation instead of considering a parameter change. In fact, there are no universal
rules for the selection of the o even though it is needed in practice. We leave this as a task
for our future study.
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