TWISTED QUADRATIC MOMENTS FOR DIRICHLET L-FUNCTIONS

Stéphane R. Louboutin

Abstract. Given c, a positive integer, we set

$$
M(f, c):=\frac{2}{\phi(f)} \sum_{\chi \in X_{f}^{-}} \chi(c)|L(1, \chi)|^{2}
$$

where X_{f}^{-}is the set of the $\phi(f) / 2$ odd Dirichlet characters $\bmod f>2$, with $\operatorname{gcd}(f, c)=1$. We point out several mistakes in recently published papers and we give explicit closed formulas for the f 's such that their prime divisors are all equal to ± 1 modulo c. As a Corollary, we obtain closed formulas for $M(f, c)$ for $c \in\{1,2,3,4,5,6,8,10\}$. We also discuss the case of twisted quadratic moments for primitive characters.

1. Introduction: a general formula

Throughout this paper, $c \geq 1$ is a positive integer and $f>2$ is an integer coprime with c. Let X_{f}^{-}be the set of the $\phi(f) / 2$ odd Dirichlet characters modulo f. Set

$$
\begin{aligned}
M(f, c) & :=\frac{2}{\phi(f)} \sum_{\chi \in X_{f}^{-}} \chi(c)|L(1, \chi)|^{2} \\
& =\frac{2}{\phi(f)} \sum_{\chi \in X_{f}^{-}} \overline{\chi(c)}|L(1, \chi)|^{2} \quad(\operatorname{gcd}(f, c)=1) .
\end{aligned}
$$

Our aim is to point out mistakes in the literature for explicit formulas for these mean values and to replace them by correct statements (see Theorems 4 and 10). Our starting point is the formula (see [6, Proposition 1]):

$$
\begin{equation*}
L(1, \chi)=\frac{\pi}{2 f} \sum_{a=1}^{f-1} \chi(a) \cot (\pi a / f) \quad\left(\chi \in X_{f}^{-}\right) \tag{1}
\end{equation*}
$$

Received November 21, 2014; Revised April 8, 2015.
2010 Mathematics Subject Classification. Primary 11M20.
Key words and phrases. L-function, character, mean values, moments.

Setting

$$
\begin{equation*}
\delta_{f}^{-}(a, b):=\frac{2}{\phi(f)} \sum_{\chi \in X_{f}^{-}} \chi(a) \overline{\chi(b)} \tag{2}
\end{equation*}
$$

and using the orthogonality relations

$$
\delta_{f}^{-}(a, b)=\left\{\begin{array}{lll}
+1 & \text { if } b \equiv+a & (\bmod f) \text { and } \operatorname{gcd}(a, f)=1 \tag{3}\\
-1 & \text { if } b \equiv-a \quad(\bmod f) \text { and } \operatorname{gcd}(a, f)=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

we readily obtain

$$
\begin{equation*}
M(f, c)=\frac{\pi^{2}}{2 f^{2}} \tilde{S}(f, c) \tag{4}
\end{equation*}
$$

where

$$
\tilde{S}(c, d):=\sum_{\substack{a=1 \\ \operatorname{gcd}(a, c)=1}}^{c-1} \cot \left(\frac{\pi a}{c}\right) \cot \left(\frac{\pi a d}{c}\right) \quad(\operatorname{gcd}(c, d)=1)
$$

depends only on d modulo c. This formula has two drawbacks. First, we sum over indices a coprime with c. This drawback disappears when dealing with prime moduli:

$$
\begin{equation*}
M(p, c)=\frac{\pi^{2}}{2 p^{2}} S(p, c) \tag{5}
\end{equation*}
$$

where
(6) $\quad S(c, d):=\sum_{a=1}^{c-1} \cot \left(\frac{\pi a}{c}\right) \cot \left(\frac{\pi a d}{c}\right)=-S(c,-d) \quad(\operatorname{gcd}(c, d)=1)$.

The second drawback is that we would rather have a result that would depend on f modulo c (the present one depends on c modulo f). To this end, we use the so-called reciprocity law (e.g. see [10, Lemma 5]):

$$
\begin{equation*}
d S(c, d)+c S(d, c)=\left(c^{2}+d^{2}-3 c d+1\right) / 3 \quad(c>1, d>1) \tag{7}
\end{equation*}
$$

In particular, using (5) and (7), for $p \neq q$ two odd prime numbers we have

$$
\begin{equation*}
p M(p, q)+q M(q, p)=\frac{\pi^{2}}{6} \frac{p^{2}+q^{2}-3 p q+1}{p q} . \tag{8}
\end{equation*}
$$

Moreover, $S(c, 1)$ is easy to compute by determining the polynomials whose roots are the $\cot (\pi a / c)$'s (see [6, Lemma (a)]):

$$
\begin{equation*}
S(c, 1)=(c-1)(c-2) / 3 \tag{9}
\end{equation*}
$$

Now, $S(1, d)$ is not defined, but the sum in (6) being empty for $c=1$, we set

$$
\begin{equation*}
S(1, d)=0 \quad(d \in \mathbb{Z}) \tag{10}
\end{equation*}
$$

With this convention the reciprocity law (7) is now valid for $c \geq 1, d \geq 1$. Using (5) and (7) we obtain

$$
\begin{equation*}
M(p, c)=\frac{\pi^{2}}{6 c} \frac{p^{2}-b_{c}(p) p+c^{2}+1}{p^{2}} \tag{11}
\end{equation*}
$$

where $b_{c}(p):=3(c+S(c, p))$ depends only on p modulo c. For $c=1$, using (9), we recover H. Walum's formula (see [14]) for $M(p, 1), p \geq 3$ a prime. Using it with $c=2,4$ and 8 we recover [15, Corollary 1.2]:
Proposition 1. Let $p \geq 3$ be an odd prime number. Then

$$
M(p, 8)=\frac{\pi^{2}}{48 p^{2}} \times \begin{cases}p^{2}-66 p+5 & \text { if } p \equiv 1 \quad(\bmod 8) \\ p^{2}-30 p+65 & \text { if } p \equiv 3 \quad(\bmod 8) \\ p^{2}-18 p+65 & \text { if } p \equiv 5 \\ p^{2}+18 p+65 & \text { if } p \equiv 7 \\ (\bmod 8) \\ (\bmod 8)\end{cases}
$$

Proof. For example, using (7) we obtain for $p \equiv 7(\bmod 8): S(8, p)=S(8,7)=$ $-\frac{18}{7}-\frac{8}{7} S(7,8)=-\frac{18}{7}-\frac{8}{7} S(7,1)=-\frac{18}{7}-\frac{8}{7} 10=-14$.

To conclude this introduction, we come back to not necessarily prime moduli. Using Möbius inversion formula, we have

$$
\begin{equation*}
\tilde{S}(f, c)=\sum_{d \mid f} \mu(f / d) S(d, c) \tag{12}
\end{equation*}
$$

where $S(d, c)$ is defined in (6). Using (12) and (7) we end up with the following general formula for $M(f, c)$ proved in [10]:
Theorem 2. Let $c \geq 1$ be a positive integer. Set $\phi(f):=f \prod_{p \mid f}(1-1 / p)$ and $\Psi(f):=f \prod_{p \mid f}(1+1 / p)$. For $\operatorname{gcd}(f, c)=1$, we have:

$$
M(f, c)=\frac{\pi^{2}}{6 c} \frac{\phi(f)}{f}\left(\frac{\Psi(f)}{f}-\frac{3 c}{f}-\frac{3}{\phi(f)} \sum_{d \mid f} \frac{\mu(d)}{d} S(c, f / d)\right)
$$

2. The cases $c \in\{1,2\}$

Since $S(1, d)=0$ for $d \geq 1$, by (10), and $S(2, d)=0$ for $d \geq 1$ odd, by (9), we obtain (see also [6], [13], and see [9] for applications):

$$
\begin{equation*}
M(f, c)=\frac{\pi^{2}}{6 c} \frac{\phi(f)}{f}\left(\frac{\Psi(f)}{f}-\frac{3 c}{f}\right)(c \in\{1,2\}, \operatorname{gcd}(f, c)=1) \tag{13}
\end{equation*}
$$

3. The cases $c \in\{3,4,6\}$

In this section we show that [11, Theorems 1.3, 1.4 and 1.5] are false and give correct statements replacing them. In particular, in Theorem 4 we give closed formulas for $M(f, c)$, when $c \in\{3,4,6\}$.

Lemma 3. Assume that $c>2$ and $\operatorname{gcd}(c, f)=1$. Set

$$
\Psi_{\chi}(f)=\prod_{p \mid f}\left(1-\frac{\chi(p)}{p}\right) \text { and } S_{c}(\chi)=\sum_{\substack{1 \leq a<c / 2 \\ \operatorname{gcd}(c, a)=1}} \chi(a) S(c, a) .
$$

Then

$$
\begin{equation*}
\sum_{d \mid f} \frac{\mu(d)}{d} S(c, f / d)=\frac{2}{\phi(c)} \sum_{\chi \in X_{c}^{-}} \overline{\chi(f)} \Psi_{\chi}(f) S_{c}(\chi) \tag{14}
\end{equation*}
$$

Proof. Set

$$
\tilde{S}_{c}(\chi)=\sum_{a=1}^{c-1} \chi(a) S(c, a)
$$

Let X_{c} be the group of the $\phi(c)$ Dirichlet characters modulo c. Then

$$
\delta_{c}(a, x)=\frac{1}{\phi(c)} \sum_{\chi \in X_{c}} \chi(a) \overline{\chi(x)}=\left\{\begin{array}{ll}
1 & \text { if } x \equiv a \\
0 & \text { otherwise }
\end{array} \quad(\bmod c) \text { and } \operatorname{gcd}(c, a)=1\right.
$$

and

$$
S(c, x)=\sum_{\substack{a=1 \\ \operatorname{gcd}(c ; a)=1}}^{c-1} S(c, a) \delta_{c}(a, x) \quad(\operatorname{gcd}(c, x)=1)
$$

(notice that $a \mapsto S(c, a)$ is c-periodic). Hence, using $\sum_{d \mid f} \frac{\mu(d)}{d} \chi(d)=\Psi_{\chi}(f)$ and noticing that $\chi(a)=0$ for $\operatorname{gcd}(c, a)>1$, we have

$$
\sum_{d \mid f} \frac{\mu(d)}{d} S(c, f / d)=\frac{1}{\phi(c)} \sum_{\chi \in X_{c}} \overline{\chi(f)} \Psi_{\chi}(f) \tilde{S}_{c}(\chi)
$$

Changing a to $c-a$ and using $S(c, c-a)=-S(c, a)$ and $\chi(c-a)=\chi(-1) \chi(a)$, we obtain $\tilde{S}_{c}(\chi)=0$ if $\chi(-1)=+1$ and $\tilde{S}_{c}(\chi)=2 S_{c}(\chi)$ if $\chi(-1)=-1$.

Theorem 4. Assume that $c>2$. Set $\epsilon_{c}(n)=+1$ if $n \equiv+1(\bmod c)$ and $\epsilon_{c}(n)=-1$ if $n \equiv-1(\bmod c)$. If p divides f implies $p \equiv \pm 1(\bmod c)$, which is always the case for $c \in\{3,4,6\}$ and $\operatorname{gcd}(c, f)=1$, then

$$
\sum_{d \mid f} \frac{\mu(d)}{d} S(c, f / d)=S(c, 1) \epsilon_{c}(f) \prod_{p \mid f}\left(1-\frac{\epsilon_{c}(p)}{p}\right)
$$

and

$$
M(f, c)=\frac{\pi^{2}}{6 c} \frac{\phi(f)}{f}\left(\frac{\Psi(f)}{f}-\frac{3 c}{f}-(c-1)(c-2) \frac{\epsilon_{c}(f)}{f} \prod_{p \mid f} \frac{p-\epsilon_{c}(p)}{p-1}\right)
$$

Proof. If $x \equiv \epsilon_{c}(x)(\bmod c)$, with $\epsilon_{c}(x) \in\{ \pm 1\}$, and if $\chi \in X_{c}^{-}$, then $\chi(x)=$ $\epsilon_{c}(x)$ does not depend on $\chi \in X_{c}^{-}$. Hence, $\overline{\chi(f)} \Psi_{\chi}(f)=\epsilon_{c}(f) \prod_{p \mid f}\left(1-\frac{\epsilon_{c}(p)}{p}\right)$ does not depend on $\chi \in X_{c}^{-}$and

$$
\sum_{d \mid f} \frac{\mu(d)}{d} S(c, f / d)=\left(\sum_{\substack{1 \leq a<c / 2 \\ \operatorname{gcd}(c, a)=1}} S(c, a) \delta_{c}^{-}(a, f)\right) \epsilon_{c}(f) \prod_{p \mid f}\left(1-\frac{\epsilon_{c}(p)}{p}\right)
$$

where $\delta_{c}^{-}(a, x)$ is defined in (2). Since $f \equiv \epsilon_{c}(f) \equiv \pm 1(\bmod c)$, the only index a for which $\delta_{c}^{-}(a, f)$ is not equal to 0 is $a=1$ and $\delta_{c}^{-}(1, f)=\epsilon_{c}(f)$, by (3). The result follows by using (9).

4. The cases $c \in\{5,8,10\}$

Corollary 5. Let χ_{5} be the odd Dirichlet character modulo 5 defined by $\chi_{5}(1)=$ $1, \chi_{5}(2)=\zeta_{4}, \chi_{5}(3)=-\zeta_{4}$ and $\chi_{5}(4)=-1$. Then

$$
\sum_{d \mid f} \frac{\mu(d)}{d} S(5, f / d)=4 \Re\left(\overline{\chi_{5}(f)} \prod_{p \mid f}\left(1-\frac{\chi_{5}(p)}{p}\right)\right)
$$

Proof. Clearly $X_{5}^{-}=\left\{\chi_{5}, \overline{\chi_{5}}\right\}$. Moreover, $S(5,1)=4$ and $S(5,2)=0$. Hence, $S_{5}(\chi)=\chi(1) S(5,1)+\chi(2) S(5,2)=4, \chi \in X_{5}^{-}$, and the desired result follows, by (14).

Corollary 6. We have
$\sum_{d \mid f} \frac{\mu(d)}{d} S(8, f / d)=8\left(\frac{-8}{f}\right) \prod_{p \mid f}\left(1-\frac{\left(\frac{-8}{p}\right)}{p}\right)+3\left(\frac{-4}{f}\right) \prod_{p \mid f}\left(1-\frac{\left(\frac{-4}{p}\right)}{p}\right)$.
Proof. Here $1 \leq a<8 / 2$ and $\operatorname{gcd}(8, a)=1$ implies $a=1$ or $a=3$. Now, $S(8,1)=14, S(8,3)=2$ and $X_{10}^{-}=\left\{\left(\frac{-4}{\bullet}\right),\left(\frac{-8}{\bullet}\right)\right\}$.
Corollary 7. Let χ_{10} be the odd Dirichlet character modulo 10 defined by $\chi_{10}(1)=1, \chi_{10}(3)=\zeta_{4}, \chi_{10}(7)=-\zeta_{4}$ and $\chi_{10}(9)=-1$. Then

$$
\sum_{d \mid f} \frac{\mu(d)}{d} S(10, f / d)=24 \Re\left(\overline{\chi_{10}(f)} \prod_{p \mid f}\left(1-\frac{\chi_{10}(p)}{p}\right)\right)
$$

Proof. Here $1 \leq a<10 / 2$ and $\operatorname{gcd}(10, a)=1$ implies $a=1$ or $a=3$. Now, $S(10,1)=24, S(10,3)=0$ and $X_{10}^{-}=\left\{\chi_{10}, \overline{\chi_{10}}\right\}$.

For $c=2$, formula (13) agrees with [11, Theorem 1.1]. However, Theorem 4 contradicts [11, Theorems 1.3 and 1.4]. Using numerical examples we could not find any disagreement with Theorem 4 whereas [11, Theorems 1.3 and 1.4] were indeed contradicted. In the same way, numerical examples readily show that [11, Theorem 1.5] is false. In fact, you cannot expect a closed formula valid for all $f \equiv 1(\bmod c)$:

Corollary 8. Let $c>2$ be given. Let $f=p^{m}$ be a power of a prime $p \geq 3$.
If $p \equiv 1(\bmod c)$, then $f \equiv 1(\bmod c)$ and

$$
M(f, c)=\frac{\pi^{2}}{6 c}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}-\frac{c^{2}+2}{f}\right)
$$

(in agreement with [11, Theorem 1.5]).
If $p \equiv-1(\bmod c)$ and m is even then $f \equiv 1(\bmod c)$ and

$$
M(f, c)=\frac{\pi^{2}}{6 c}\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}-\frac{c^{2}+2}{f}-2 \frac{c^{2}-3 c+2}{(p-1) f}\right)
$$

(in disagreement with [11, Theorem 1.5]).
Let us now identify the mistake in [11]'s proofs. For example, let us have a look at [11, Proof of Theorem 1.3, pages 751-752]. They use their identity (1.4):

$$
S(3, q)=\frac{1}{\pi^{2} q} \sum_{d \mid q} \frac{d^{2}}{\phi(d)} \sum_{\chi \in X_{d}^{-}} \chi(3)|L(1, \chi)|^{2}
$$

and their Proposition 2.1 (Möbius inversion formula) to obtain

$$
\begin{equation*}
\sum_{\chi \in X_{q}^{-}} \chi(3)|L(1, \chi)|^{2}=\sum_{d \mid q} \mu(d) S(3, q / d) \tag{15}
\end{equation*}
$$

The mistake is now that they compute a formula for $S(3, q)$ according as $q \equiv 1$ $(\bmod 3)$ or $q \equiv 2(\bmod 3)$, and plug their formula inside (15) without realizing that knowing q modulo 3 does not give them the values for q / d modulo 3 as d ranges over the divisors of q.

5. The case of primitive characters

In this section we give a simpler and clearer exposition of the results obtained in [7], namely that is hopeless to find closed formulas for twisted quadratic moments of L-functions over odd primitive characters. Let $J(f)$ denote the number of primitive Dirichlet characters modulo $f>2$. The number $J(f)$ of primitive character modulo f is a multiplicative function of f such that $J\left(p^{m}\right)=\phi\left(p^{m}\right)-\phi\left(p^{m-1}\right)=\phi\left(p^{m}\right)^{2} / p^{m}$ for p a prime and $m \geq 2$. Hence, $J(f)=\phi(f)^{2} / f$ for f square-full (to be used in the next section). Notice also that $J(f)>0$ if and only if $2<f \not \equiv 2(\bmod 4)$. Let P_{f}^{-}be the set of the $J(f) / 2$ odd primitive Dirichlet characters modulo f. If ψ is a character modulo a divisor of f, we let $\tilde{\psi}$ denote the character modulo f induced by ψ. Using the inclusion-exclusion principle we have

$$
\begin{equation*}
\sum_{\chi \in P_{f}^{-}} \chi(c)|L(1, \chi)|^{2}=\sum_{\substack{d \mid f \\ d \neq f}} \mu(d) \sum_{\psi \in X_{f / d}^{-}} \chi(c)|L(1, \tilde{\psi})|^{2} \tag{16}
\end{equation*}
$$

Theorem 9. If $q>p \geq 3$ are prime numbers and if $q \equiv 1(\bmod p)$, then

$$
\sum_{\chi \in P_{p q}^{-}}|L(1, \chi)|^{2}=\frac{\pi^{2}}{12} \frac{(p-2)(p-1)(p+1)(q-1)^{2}}{p^{2} q}
$$

Proof. By (16), we have

$$
\sum_{\chi \in P_{p q}^{-}}|L(1, \chi)|^{2}=\sum_{\chi \in X_{p q}^{-}}|L(1, \chi)|^{2}-\sum_{\psi \in X_{p}^{-}}|L(1, \tilde{\psi})|^{2}-\sum_{\psi \in X_{q}^{-}}|L(1, \tilde{\psi})|^{2}
$$

If $\psi \in X_{p}^{-}$, then $L(1, \tilde{\psi})=(1-\psi(q) / q) L(1, \psi)$ and

$$
\frac{2}{\phi(p)} \sum_{\psi \in X_{p}^{-}}|L(1, \tilde{\psi})|^{2}=\left(1+\frac{1}{q^{2}}\right) M(p, 1)-\frac{2}{q} M(p, q)
$$

Using the same identity where p and q are exchanged, we obtain:

$$
\begin{aligned}
\sum_{\chi \in P_{p q}^{-}}|L(1, \chi)|^{2}= & \frac{\phi(p q)}{2} M(p q, 1)-\frac{\phi(p)}{2}\left(1+\frac{1}{q^{2}}\right) M(p, 1)+\frac{\phi(p)}{q} M(p, q) \\
& -\frac{\phi(q)}{2}\left(1+\frac{1}{p^{2}}\right) M(q, 1)+\frac{\phi(q)}{p} M(q, p)
\end{aligned}
$$

By its definition $M(f, c)$ depends on c modulo f only. Hence, $M(p, q)=$ $M(p, 1)$. Using (8) to express $M(q, p)$ in terms of $M(p, q)=M(p, 1)$ and using (13) to compute $M(p q, 1), M(p, 1)$ and $M(q, 1)$, we obtain the desired result.

As explained in [7], Theorem 9 which gives a result with is not symmetrical in p and q dampens hopes of ever finding a simple formula for the mean value of $|L(1, \chi)|^{2}$ for primitive odd Dirichlet characters modulo $f>2$; in particular, the formula conjectured in [17] (see also [MR1077163 (91j:11068)]) is wrong.

6. Twisted moments for primitive characters of square-full conductors

The only situation where we can readily use (16) is when $L(1, \tilde{\psi})=L(1, \psi)$ for any square-free d dividing f and any $\psi \in X_{f / d}^{-}$. Since

$$
L(1, \psi)=L(1, \tilde{\psi}) \prod_{p \mid f}(1-\tilde{\psi}(p) / p), \psi \in X_{f / d}^{-}
$$

we want to have $\tilde{\psi}(p)=0$ for any prime p dividing f and any $\psi \in X_{f / d}^{-}$, i.e., we want to have $p \mid f / d$ for any prime p dividing f and any square-free d dividing f, i.e., we want f to be square-full. So, let us assume that $f>2$ is square-full,
i.e., such that p divides f implies p^{2} divides f. Then for any square-free divisor d of f, we have $\tilde{\psi}=\psi, \psi \in X_{f / d}^{-}$, and (16) yields (after changing d into f / d)

$$
\begin{equation*}
\tilde{M}(f, c):=\frac{2}{J(f)} \sum_{\chi \in P_{f}^{-}} \chi(c)|L(1, \chi)|^{2}=\frac{f}{\phi(f)^{2}} \sum_{d \mid f} \mu(f / d) \phi(d) M(d, c) \tag{17}
\end{equation*}
$$

Theorem 10. Let $c>2$ be a given integer. Let f be a square-full integer such that p divides f implies $p \equiv \pm 1(\bmod c)$, which is always the case for $c \in\{3,4,6\}$. If there exists a prime $p \equiv 1(\bmod c)$ dividing f, then

$$
\tilde{M}(f, c)=\frac{\pi^{2}}{6 c} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)
$$

If all the prime p dividing f satisfy $p \equiv-1(\bmod c)$, then

$$
\tilde{M}(f, c)=\frac{\pi^{2}}{6 c}\left(\prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\epsilon_{c}(f) \frac{(c-1)(c-2)}{f} \prod_{p \mid f} 2 \frac{p+1}{p-1}\right)
$$

In particular, if $c \in\{3,4,6\}$, then this formulas holds true for any square-full $f>2$ coprime with c. Moreover,

$$
\tilde{M}(f, 1)=\frac{\pi^{2}}{6} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)(f \text { square-full })
$$

as in [17], and

$$
\tilde{M}(f, 2)=\frac{\pi^{2}}{12} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)(f \text { odd and square-full })
$$

Proof. Assume that $c>2$. We start from (17) and apply Theorem 4 to each $M(d, c)$ (notice that if f is in E_{c} then any divisor d of f is also in E_{c}):

$$
\phi(d) M(d, c)=\frac{\pi^{2}}{6 c} X(d)\left(Y(d) \phi(d)-3 c X(d)-(c-1)(c-2) \epsilon_{c}(d) X(d) Z_{c}(d)\right)
$$

where $X(d)=\phi(d) / d=\prod_{p \mid d}(1-1 / p), Y(d)=\Psi(d) / d=\prod_{p \mid d}(1+1 / p)$ and $Z_{c}(d)=\prod_{p \mid d}\left(p-\epsilon_{c}(p)\right) /(p-1)$. The key point is that if d is a divisor of a square-full integer $f>2$ such that $\mu(f / d) \neq 0$, then d and f have the same prime divisors and $X(d)=X(f), Y(d)=Y(f)$ and $Z_{c}(d)=Z_{c}(f)$ do not depend on d. Hence, we obtain

$$
\begin{aligned}
& \tilde{M}(f, c)=\frac{f}{\phi(f)^{2}} \frac{\pi^{2}}{6 c} X(f)\left(Y(f) \sum_{d \mid f} \mu(f / d) \phi(d)-3 c X(f) \sum_{d \mid f} \mu(f / d)\right. \\
&\left.-(c-1)(c-2) X(f) Z_{c}(f) \sum_{d \mid f} \mu(f / d) \epsilon_{c}(d)\right)
\end{aligned}
$$

and using $\sum_{d \mid f} \mu(f / d) \phi(d)=\phi(f)^{2} / f$ (for $f>1$ square-full), $\sum_{d \mid f} \mu(f / d)=0$ (for $f>1$) and $\sum_{d \mid f} \mu(f / d) \epsilon_{c}(d)=\epsilon_{c}(f) \prod_{p \mid f}\left(1-\epsilon_{c}(p)\right)$ the desired result follows. For $c=1$ and $c=2$ the proof is even simpler using (17) and (13).

7. The case $c=2^{k}$

Let $p \geq 3$ be an odd prime number. Z . Wu and W. Zhang gave in [15] formulas for $M(p, 2), M(p, 4)$ and $M(p, 8)$ (they readily follow from (11)), and conjectured a formula for the $b_{2^{k}}(p)$'s, $k \geq 2$ (see (11)). The truth of this Conjecture for a given $k \geq 2$ is equivalent to the truth of the following one:

Conjecture 11 (See [15, Conjecture 2.1]). For $m>1$, let $R_{m}(n)$ denote the unique integer in $\{0,1, \ldots, m-1\}$ equal to n modulo m. For $m>1$ even, let $L_{m}(n)$ denote the unique integer in $\{-m / 2+1, \ldots, m / 2\}$ equal to n modulo m. Then for $p>2^{k}$ be a prime number it holds that
$f_{p}\left(2^{k-1}\right):=\#\left\{a ; 1 \leq a \leq p-1\right.$ and $\left.R_{p}\left(2^{k-1} a\right) \not \equiv a(\bmod 2)\right\}=\frac{p-L_{2^{k}}(p)}{2}$.
Whereas their Conjecture 2.1 is true for $2^{k}=2$ and $2^{k}=4$ (see [15, Lemma 2.2] or Corollary 13):
$f_{p}(2)=\left\{\begin{array}{lll}\frac{p-1}{2} & \text { if } p \equiv 1 \quad(\bmod 4) \\ \frac{p+1}{2} & \text { if } p \equiv-1 \quad(\bmod 4)\end{array}\right.$ and $f_{p}(4)=\left\{\begin{array}{lll}\frac{p-1}{2} & \text { if } p \equiv 1 \quad(\bmod 8) \\ \frac{p-3}{2} & \text { if } p \equiv 3 & (\bmod 8) \\ \frac{p+1}{2} & \text { if } p \equiv-1 & (\bmod 8) \\ \frac{p+3}{2} & \text { if } p \equiv-3 & (\bmod 8)\end{array}\right.$
we will prove in Corollary 14 that it is not true for $2^{k}=8$: if $p \equiv 3(\bmod 16)$ then $f_{p}(8)=(p+1) / 2=\left(p+4-L_{16}(p)\right) / 2 \neq\left(p-L_{16}(p)\right) / 2$.

Proposition 12. For $p>2, c>1$ and $\operatorname{gcd}(p, c)=1$, we have

$$
\begin{aligned}
f_{p}(c) & :=\#\left\{a ; 1 \leq a \leq p-1 \text { and } R_{p}(a c) \not \equiv a \quad(\bmod 2)\right\} \\
& =\frac{p-1}{2}-\frac{5 S(p, c)-2 S(p, 2 c)-2 S\left(p, 2^{*} c\right)}{2 p}
\end{aligned}
$$

where $2^{*} \cdot 2 \equiv 1(\bmod p)$.
Proof. By [15, Lemma 2.1] we have

$$
f_{p}(c)=\frac{p-1}{2}-\frac{2 p}{\pi^{2}(p-1)} \sum_{\chi \in X_{P}^{-}} \chi(c)\left(5-2 \chi(2)-2 \chi\left(2^{*}\right)\right)|L(1, \chi)|^{2}
$$

and the desired result follows by using (5) and the definition of $M(p, c)$.
Corollary 13. Let $c>2$ be even and p coprime with c. We have

$$
\begin{equation*}
f_{p}(c)=\frac{p}{2}+\frac{5 S(c, p)-S(2 c, p)-4 S(c / 2, p)}{2 c} \tag{18}
\end{equation*}
$$

which depends on p mod $2 c$ only. For example, we have

$$
f_{p}(c)= \begin{cases}\frac{p-1}{2} & \text { if } p \equiv 1 \quad(\bmod 2 c) \tag{19}\\ \frac{p-(c-1)}{2} & \text { if } p \equiv c-1 \quad(\bmod 2 c) \\ \frac{p+(c-1)}{2} & \text { if } p \equiv c+1 \quad(\bmod 2 c) \\ \frac{p+1}{2} & \text { if } p \equiv 2 c-1 \quad(\bmod 2 c) .\end{cases}
$$

If $p \equiv r(\bmod 2 c)$ with $r>1$, then

$$
\begin{equation*}
f_{p}(c)=\frac{p-1}{2}-\frac{5 S(r, c)-2 S(r, 2 c)-2 S(r, c / 2)}{2 r} . \tag{20}
\end{equation*}
$$

Proof. To obtain (18), use (7): $S(p, d)=F(p, d)-p S(d, p) / d$, with $F(p, d):=$ $\frac{p^{2}-3 d p+d^{2}+1}{3 d}$, and notice that $5 F(p, c)-2 F(p, 2 c)-2 F(p, c / 2)=-p$. Then (19) follows using (7). To obtain (20) apply (7) once again and notice that $5 F(c, p)-F(2 c, p)-4 F(c / 2, p)=-c$.

Corollary 14. For $k \geq 1$ and $p \equiv 3\left(\bmod 2^{k+1}\right)$ we have $L_{2^{k+1}}(p)=3$ and

$$
f_{p}\left(2^{k}\right)=\left(p-1-2(-1)^{k}\right) / 2
$$

Proof. Use $S\left(3,2^{l}\right)=S\left(3,(-1)^{l}\right)=(-1)^{l} S(3,1)=\frac{2}{3}(-1)^{l}$.
Since $\left(p-L_{2^{k+1}}(p)\right) / 2=(p-3) / 2$ for $k \geq 2$ and $p \equiv 3\left(\bmod 2^{k+1}\right),[15$, Conjecture 2.1] is false for $k \geq 2$ and k odd, hence false for $k=3$.

8. Conclusion

We refer the reader to the bibliography for the recent literature regarding more complicated mean values of the type

$$
M\left(f_{1}, f_{2}, c\right)=\frac{4}{\phi\left(f_{1}\right) \phi\left(f_{2}\right)} \sum_{\chi_{1} \in X_{f_{1}}^{-}} \sum_{\chi_{1} \in X_{f_{1}}^{-}} \chi(c) L\left(m, \chi_{1}\right) \overline{L\left(n, \chi_{2}\right)},
$$

where $m \geq 1$ and $n \geq 1$ are both odd (e.g., see [1], [3], [4], [5], [8], [12]).
See also [2] and [16] for recent papers dealing with L-functions.

References

[1] E. Alkan, On the mean square average of special values of L-functions, J. Number Theory 131 (2011), no. 8, 1470-1485; Addendum: J. Number Theory 131 (2011), no. 11, 2245.
[2] , Values of Dirichlet L-functions, Gauss sums and trigonometric sums, Ramanujan J. 26 (2011), no. 3, 375-398.
[3] , Averages of values of L-series, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1161-1175.
[4] A. Bayad and A. Raouj, Mean values of L-functions and Dedekind sums, J. Number Theory 132 (2012), no. 8, 1645-1652.
[5] H. Liu, On the mean values of Dirichlet L-functions, J. Number Theory 147 (2015), 172-183.
[6] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), 190-196; Addendum: Canad. Math. Bull. 37 (1994), 89.

[7], On the mean value of $|L(1, \chi)|^{2}$ for odd primitive Dirichlet characters, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 7, 143-145.
\qquad , The mean value of $|L(k, \chi)|^{2}$ at positive rational integers $k \geq 1$, Colloq. Math. 90 (2001), no. 1, 69-76.
[9] , Mean values of L-functions and relative class numbers of cyclotomic fields, Publ. Math. Debrecen 78 (2011), no. 3-4, 647-658.
[10] , A twisted quadratic moment for Dirichlet L-functions, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1539-1544.
[11] R. Ma, Y. L. Zhang, and M. Grützmann, Some Notes on Identities for Dirichlet Lfunctions, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 5, 747-754.
[12] T. Okamoto and T. Onozuka, On various mean values of Dirichlet L-functions, Acta Arith. 167 (2015), no. 2, 101-115.
[13] M.-G. Qi, A class of mean square formulas for L-functions, J. Tsinghua Univ. 31 (1991), no. 3, 34-41.
[14] H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3.
[15] Z. Wu and W. Zhang, On the mean values of $L(1, \chi)$, Bull. Korean Math. Soc. 49 (2012), no. 6, 1303-1310.
[16] P. T. Young, Rational series for multiple zeta and log gamma functions, J. Number Theory 133 (2011), no. 12, 3995-4009.
[17] W. P. Zhang, A note on a class of mean square values of L-functions, J. Northwest Univ. 20 (1990), no. 3, 9-12.

Aix Marseille Université
CNRS, Centrale Marseille, I2M, UMR 7373
13453 Marseille, France
Postal adress: Institut de Mathématiques de Marseille
Aix Marseille Université
163 Avenue de Luminy, Case 907
13288 Marseille Cedex 9, France
E-mail address: stephane.louboutin@univ-amu.fr

