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TWISTED QUADRATIC MOMENTS

FOR DIRICHLET L-FUNCTIONS

Stéphane R. Louboutin

Abstract. Given c, a positive integer, we set

M(f, c) :=
2

φ(f)

∑

χ∈X
−
f

χ(c)|L(1, χ)|2,

where X−
f

is the set of the φ(f)/2 odd Dirichlet characters mod f > 2,

with gcd(f, c) = 1. We point out several mistakes in recently published
papers and we give explicit closed formulas for the f ’s such that their
prime divisors are all equal to ±1 modulo c. As a Corollary, we obtain

closed formulas for M(f, c) for c ∈ {1, 2, 3, 4, 5, 6, 8, 10}. We also discuss
the case of twisted quadratic moments for primitive characters.

1. Introduction: a general formula

Throughout this paper, c ≥ 1 is a positive integer and f > 2 is an integer
coprime with c. Let X−

f be the set of the φ(f)/2 odd Dirichlet characters
modulo f . Set

M(f, c) :=
2

φ(f)

∑

χ∈X
−
f

χ(c)|L(1, χ)|2

=
2

φ(f)

∑

χ∈X
−
f

χ(c)|L(1, χ)|2 (gcd(f, c) = 1).

Our aim is to point out mistakes in the literature for explicit formulas for these
mean values and to replace them by correct statements (see Theorems 4 and
10). Our starting point is the formula (see [6, Proposition 1]):

(1) L(1, χ) =
π

2f

f−1
∑

a=1

χ(a) cot(πa/f) (χ ∈ X−

f ).
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Setting

(2) δ−f (a, b) :=
2

φ(f)

∑

χ∈X
−
f

χ(a)χ(b)

and using the orthogonality relations

(3) δ−f (a, b) =











+1 if b ≡ +a (mod f) and gcd(a, f) = 1

−1 if b ≡ −a (mod f) and gcd(a, f) = 1

0 otherwise

we readily obtain

(4) M(f, c) =
π2

2f2
S̃(f, c),

where

S̃(c, d) :=

c−1
∑

a=1
gcd(a,c)=1

cot
(πa

c

)

cot

(

πad

c

)

(gcd(c, d) = 1)

depends only on d modulo c. This formula has two drawbacks. First, we sum
over indices a coprime with c. This drawback disappears when dealing with
prime moduli:

(5) M(p, c) =
π2

2p2
S(p, c),

where

(6) S(c, d) :=

c−1
∑

a=1

cot
(πa

c

)

cot

(

πad

c

)

= −S(c,−d) (gcd(c, d) = 1).

The second drawback is that we would rather have a result that would
depend on f modulo c (the present one depends on c modulo f). To this end,
we use the so-called reciprocity law (e.g. see [10, Lemma 5]):

(7) dS(c, d) + cS(d, c) = (c2 + d2 − 3cd+ 1)/3 (c > 1, d > 1).

In particular, using (5) and (7), for p 6= q two odd prime numbers we have

(8) pM(p, q) + qM(q, p) =
π2

6

p2 + q2 − 3pq + 1

pq
.

Moreover, S(c, 1) is easy to compute by determining the polynomials whose
roots are the cot(πa/c)’s (see [6, Lemma (a)]):

(9) S(c, 1) = (c− 1)(c− 2)/3.

Now, S(1, d) is not defined, but the sum in (6) being empty for c = 1, we set

(10) S(1, d) = 0 (d ∈ Z).
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With this convention the reciprocity law (7) is now valid for c ≥ 1, d ≥ 1.
Using (5) and (7) we obtain

(11) M(p, c) =
π2

6c

p2 − bc(p)p+ c2 + 1

p2
,

where bc(p) := 3(c+S(c, p)) depends only on p modulo c. For c = 1, using (9),
we recover H. Walum’s formula (see [14]) for M(p, 1), p ≥ 3 a prime. Using it
with c = 2, 4 and 8 we recover [15, Corollary 1.2]:

Proposition 1. Let p ≥ 3 be an odd prime number. Then

M(p, 8) =
π2

48p2
×



















p2 − 66p+ 5 if p ≡ 1 (mod 8),

p2 − 30p+ 65 if p ≡ 3 (mod 8),

p2 − 18p+ 65 if p ≡ 5 (mod 8),

p2 + 18p+ 65 if p ≡ 7 (mod 8).

Proof. For example, using (7) we obtain for p ≡ 7 (mod 8): S(8, p) = S(8, 7) =
− 18

7 − 8
7S(7, 8) = − 18

7 − 8
7S(7, 1) = − 18

7 − 8
710 = −14. �

To conclude this introduction, we come back to not necessarily prime moduli.
Using Möbius inversion formula, we have

(12) S̃(f, c) =
∑

d|f

µ(f/d)S(d, c),

where S(d, c) is defined in (6). Using (12) and (7) we end up with the following
general formula for M(f, c) proved in [10]:

Theorem 2. Let c ≥ 1 be a positive integer. Set φ(f) := f
∏

p|f (1− 1/p) and

Ψ(f) := f
∏

p|f (1 + 1/p). For gcd(f, c) = 1, we have:

M(f, c) =
π2

6c

φ(f)

f





Ψ(f)

f
−

3c

f
−

3

φ(f)

∑

d|f

µ(d)

d
S(c, f/d)



 .

2. The cases c ∈ {1, 2}

Since S(1, d) = 0 for d ≥ 1, by (10), and S(2, d) = 0 for d ≥ 1 odd, by (9),
we obtain (see also [6], [13], and see [9] for applications):

(13) M(f, c) =
π2

6c

φ(f)

f

(

Ψ(f)

f
−

3c

f

)

(c ∈ {1, 2}, gcd(f, c) = 1).

3. The cases c ∈ {3, 4, 6}

In this section we show that [11, Theorems 1.3, 1.4 and 1.5] are false and
give correct statements replacing them. In particular, in Theorem 4 we give
closed formulas for M(f, c), when c ∈ {3, 4, 6}.
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Lemma 3. Assume that c > 2 and gcd(c, f) = 1. Set

Ψχ(f) =
∏

p|f

(

1−
χ(p)

p

)

and Sc(χ) =
∑

1≤a<c/2
gcd(c,a)=1

χ(a)S(c, a).

Then

(14)
∑

d|f

µ(d)

d
S(c, f/d) =

2

φ(c)

∑

χ∈X
−
c

χ(f)Ψχ(f)Sc(χ).

Proof. Set

S̃c(χ) =

c−1
∑

a=1

χ(a)S(c, a).

Let Xc be the group of the φ(c) Dirichlet characters modulo c. Then

δc(a, x) =
1

φ(c)

∑

χ∈Xc

χ(a)χ(x) =

{

1 if x ≡ a (mod c) and gcd(c, a) = 1

0 otherwise

and

S(c, x) =

c−1
∑

a=1
gcd(c;a)=1

S(c, a)δc(a, x) (gcd(c, x) = 1)

(notice that a 7→ S(c, a) is c-periodic). Hence, using
∑

d|f
µ(d)
d
χ(d) = Ψχ(f)

and noticing that χ(a) = 0 for gcd(c, a) > 1, we have

∑

d|f

µ(d)

d
S(c, f/d) =

1

φ(c)

∑

χ∈Xc

χ(f)Ψχ(f)S̃c(χ).

Changing a to c−a and using S(c, c−a) = −S(c, a) and χ(c−a) = χ(−1)χ(a),

we obtain S̃c(χ) = 0 if χ(−1) = +1 and S̃c(χ) = 2Sc(χ) if χ(−1) = −1. �

Theorem 4. Assume that c > 2. Set ǫc(n) = +1 if n ≡ +1 (mod c) and

ǫc(n) = −1 if n ≡ −1 (mod c). If p divides f implies p ≡ ±1 (mod c), which
is always the case for c ∈ {3, 4, 6} and gcd(c, f) = 1, then

∑

d|f

µ(d)

d
S(c, f/d) = S(c, 1)ǫc(f)

∏

p|f

(

1−
ǫc(p)

p

)

and

M(f, c) =
π2

6c

φ(f)

f





Ψ(f)

f
−

3c

f
− (c− 1)(c− 2)

ǫc(f)

f

∏

p|f

p− ǫc(p)

p− 1



 .
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Proof. If x ≡ ǫc(x) (mod c), with ǫc(x) ∈ {±1}, and if χ ∈ X−

c , then χ(x) =

ǫc(x) does not depend on χ ∈ X−

c . Hence, χ(f)Ψχ(f) = ǫc(f)
∏

p|f

(

1− ǫc(p)
p

)

does not depend on χ ∈ X−

c and

∑

d|f

µ(d)

d
S(c, f/d) =







∑

1≤a<c/2
gcd(c,a)=1

S(c, a)δ−c (a, f)






ǫc(f)

∏

p|f

(

1−
ǫc(p)

p

)

,

where δ−c (a, x) is defined in (2). Since f ≡ ǫc(f) ≡ ±1 (mod c), the only index
a for which δ−c (a, f) is not equal to 0 is a = 1 and δ−c (1, f) = ǫc(f), by (3).
The result follows by using (9). �

4. The cases c ∈ {5, 8, 10}

Corollary 5. Let χ5 be the odd Dirichlet character modulo 5 defined by χ5(1) =
1, χ5(2) = ζ4, χ5(3) = −ζ4 and χ5(4) = −1. Then

∑

d|f

µ(d)

d
S(5, f/d) = 4ℜ



χ5(f)
∏

p|f

(

1−
χ5(p)

p

)



 .

Proof. Clearly X−

5 = {χ5, χ5}. Moreover, S(5, 1) = 4 and S(5, 2) = 0. Hence,
S5(χ) = χ(1)S(5, 1) + χ(2)S(5, 2) = 4, χ ∈ X−

5 , and the desired result follows,
by (14). �

Corollary 6. We have

∑

d|f

µ(d)

d
S(8, f/d) = 8

(

−8

f

)

∏

p|f



1−

(

−8
p

)

p



+ 3

(

−4

f

)

∏

p|f



1−

(

−4
p

)

p



 .

Proof. Here 1 ≤ a < 8/2 and gcd(8, a) = 1 implies a = 1 or a = 3. Now,
S(8, 1) = 14, S(8, 3) = 2 and X−

10 = {
(

−4
•

)

,
(

−8
•

)

}. �

Corollary 7. Let χ10 be the odd Dirichlet character modulo 10 defined by

χ10(1) = 1, χ10(3) = ζ4, χ10(7) = −ζ4 and χ10(9) = −1. Then

∑

d|f

µ(d)

d
S(10, f/d) = 24ℜ



χ10(f)
∏

p|f

(

1−
χ10(p)

p

)



 .

Proof. Here 1 ≤ a < 10/2 and gcd(10, a) = 1 implies a = 1 or a = 3. Now,
S(10, 1) = 24, S(10, 3) = 0 and X−

10 = {χ10, χ10}. �

For c = 2, formula (13) agrees with [11, Theorem 1.1]. However, Theorem
4 contradicts [11, Theorems 1.3 and 1.4]. Using numerical examples we could
not find any disagreement with Theorem 4 whereas [11, Theorems 1.3 and 1.4]
were indeed contradicted. In the same way, numerical examples readily show
that [11, Theorem 1.5] is false. In fact, you cannot expect a closed formula
valid for all f ≡ 1 (mod c):
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Corollary 8. Let c > 2 be given. Let f = pm be a power of a prime p ≥ 3.
If p ≡ 1 (mod c), then f ≡ 1 (mod c) and

M(f, c) =
π2

6c

(

1−
1

p

)(

1 +
1

p
−
c2 + 2

f

)

(in agreement with [11, Theorem 1.5]).
If p ≡ −1 (mod c) and m is even then f ≡ 1 (mod c) and

M(f, c) =
π2

6c

(

1−
1

p

)(

1 +
1

p
−
c2 + 2

f
− 2

c2 − 3c+ 2

(p− 1)f

)

(in disagreement with [11, Theorem 1.5]).

Let us now identify the mistake in [11]’s proofs. For example, let us have
a look at [11, Proof of Theorem 1.3, pages 751–752]. They use their identity
(1.4):

S(3, q) =
1

π2q

∑

d|q

d2

φ(d)

∑

χ∈X
−
d

χ(3)|L(1, χ)|2

and their Proposition 2.1 (Möbius inversion formula) to obtain

(15)
∑

χ∈X
−
q

χ(3)|L(1, χ)|2 =
∑

d|q

µ(d)S(3, q/d).

The mistake is now that they compute a formula for S(3, q) according as q ≡ 1
(mod 3) or q ≡ 2 (mod 3), and plug their formula inside (15) without realizing
that knowing q modulo 3 does not give them the values for q/d modulo 3 as d
ranges over the divisors of q.

5. The case of primitive characters

In this section we give a simpler and clearer exposition of the results obtained
in [7], namely that is hopeless to find closed formulas for twisted quadratic
moments of L-functions over odd primitive characters. Let J(f) denote the
number of primitive Dirichlet characters modulo f > 2. The number J(f)
of primitive character modulo f is a multiplicative function of f such that
J(pm) = φ(pm) − φ(pm−1) = φ(pm)2/pm for p a prime and m ≥ 2. Hence,
J(f) = φ(f)2/f for f square-full (to be used in the next section). Notice
also that J(f) > 0 if and only if 2 < f 6≡ 2 (mod 4). Let P−

f be the set of

the J(f)/2 odd primitive Dirichlet characters modulo f . If ψ is a character

modulo a divisor of f , we let ψ̃ denote the character modulo f induced by ψ.
Using the inclusion-exclusion principle we have

(16)
∑

χ∈P
−
f

χ(c)|L(1, χ)|2 =
∑

d|f
d 6=f

µ(d)
∑

ψ∈X
−

f/d

χ(c)|L(1, ψ̃)|2.
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Theorem 9. If q > p ≥ 3 are prime numbers and if q ≡ 1 (mod p), then

∑

χ∈P
−
pq

|L(1, χ)|2 =
π2

12

(p− 2)(p− 1)(p+ 1)(q − 1)2

p2q
.

Proof. By (16), we have

∑

χ∈P
−
pq

|L(1, χ)|2 =
∑

χ∈X
−
pq

|L(1, χ)|2 −
∑

ψ∈X
−
p

|L(1, ψ̃)|2 −
∑

ψ∈X
−
q

|L(1, ψ̃)|2.

If ψ ∈ X−

p , then L(1, ψ̃) = (1− ψ(q)/q)L(1, ψ) and

2

φ(p)

∑

ψ∈X
−
p

|L(1, ψ̃)|2 =

(

1 +
1

q2

)

M(p, 1)−
2

q
M(p, q).

Using the same identity where p and q are exchanged, we obtain:

∑

χ∈P
−
pq

|L(1, χ)|2 =
φ(pq)

2
M(pq, 1)−

φ(p)

2

(

1 +
1

q2

)

M(p, 1) +
φ(p)

q
M(p, q)

−
φ(q)

2

(

1 +
1

p2

)

M(q, 1) +
φ(q)

p
M(q, p).

By its definition M(f, c) depends on c modulo f only. Hence, M(p, q) =
M(p, 1). Using (8) to express M(q, p) in terms of M(p, q) = M(p, 1) and
using (13) to compute M(pq, 1), M(p, 1) and M(q, 1), we obtain the desired
result. �

As explained in [7], Theorem 9 which gives a result with is not symmetrical
in p and q dampens hopes of ever finding a simple formula for the mean value
of |L(1, χ)|2 for primitive odd Dirichlet characters modulo f > 2; in particular,
the formula conjectured in [17] (see also [MR1077163 (91j:11068)]) is wrong.

6. Twisted moments for primitive characters of square-full

conductors

The only situation where we can readily use (16) is when L(1, ψ̃) = L(1, ψ)
for any square-free d dividing f and any ψ ∈ X−

f/d
. Since

L(1, ψ) = L(1, ψ̃)
∏

p|f

(1− ψ̃(p)/p), ψ ∈ X−

f/d
,

we want to have ψ̃(p) = 0 for any prime p dividing f and any ψ ∈ X−

f/d
, i.e., we

want to have p | f/d for any prime p dividing f and any square-free d dividing
f , i.e., we want f to be square-full. So, let us assume that f > 2 is square-full,
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i.e., such that p divides f implies p2 divides f . Then for any square-free divisor
d of f , we have ψ̃ = ψ, ψ ∈ X−

f/d
, and (16) yields (after changing d into f/d)

(17) M̃(f, c) :=
2

J(f)

∑

χ∈P
−
f

χ(c)|L(1, χ)|2 =
f

φ(f)2

∑

d|f

µ(f/d)φ(d)M(d, c).

Theorem 10. Let c > 2 be a given integer. Let f be a square-full integer

such that p divides f implies p ≡ ±1 (mod c), which is always the case for

c ∈ {3, 4, 6}. If there exists a prime p ≡ 1 (mod c) dividing f , then

M̃(f, c) =
π2

6c

∏

p|f

(1 −
1

p2
).

If all the prime p dividing f satisfy p ≡ −1 (mod c), then

M̃(f, c) =
π2

6c





∏

p|f

(1−
1

p2
)− ǫc(f)

(c− 1)(c− 2)

f

∏

p|f

2
p+ 1

p− 1



 .

In particular, if c ∈ {3, 4, 6}, then this formulas holds true for any square-full

f > 2 coprime with c. Moreover,

M̃(f, 1) =
π2

6

∏

p|f

(1 −
1

p2
) (f square-full),

as in [17], and

M̃(f, 2) =
π2

12

∏

p|f

(1 −
1

p2
) (f odd and square-full).

Proof. Assume that c > 2. We start from (17) and apply Theorem 4 to each
M(d, c) (notice that if f is in Ec then any divisor d of f is also in Ec):

φ(d)M(d, c) =
π2

6c
X(d)

(

Y (d)φ(d) − 3cX(d)− (c− 1)(c− 2)ǫc(d)X(d)Zc(d)
)

,

where X(d) = φ(d)/d =
∏

p|d(1 − 1/p), Y (d) = Ψ(d)/d =
∏

p|d(1 + 1/p) and

Zc(d) =
∏

p|d (p− ǫc(p))/(p− 1). The key point is that if d is a divisor of a

square-full integer f > 2 such that µ(f/d) 6= 0, then d and f have the same
prime divisors and X(d) = X(f), Y (d) = Y (f) and Zc(d) = Zc(f) do not
depend on d. Hence, we obtain

M̃(f, c) =
f

φ(f)2
π2

6c
X(f)



Y (f)
∑

d|f

µ(f/d)φ(d) − 3cX(f)
∑

d|f

µ(f/d)

−(c− 1)(c− 2)X(f)Zc(f)
∑

d|f

µ(f/d)ǫc(d)



 ,
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and using
∑

d|f µ(f/d)φ(d) = φ(f)2/f (for f > 1 square-full),
∑

d|f µ(f/d) = 0

(for f > 1) and
∑

d|f µ(f/d)ǫc(d) = ǫc(f)
∏

p|f (1 − ǫc(p)) the desired result

follows. For c = 1 and c = 2 the proof is even simpler using (17) and (13). �

7. The case c = 2k

Let p ≥ 3 be an odd prime number. Z. Wu and W. Zhang gave in [15]
formulas for M(p, 2), M(p, 4) and M(p, 8) (they readily follow from (11)), and
conjectured a formula for the b2k(p)’s, k ≥ 2 (see (11)). The truth of this
Conjecture for a given k ≥ 2 is equivalent to the truth of the following one:

Conjecture 11 (See [15, Conjecture 2.1]). For m > 1, let Rm(n) denote the

unique integer in {0, 1, . . . ,m− 1} equal to n modulo m. For m > 1 even, let

Lm(n) denote the unique integer in {−m/2 + 1, . . . ,m/2} equal to n modulo

m. Then for p > 2k be a prime number it holds that

fp(2
k−1) := #{a; 1 ≤ a ≤ p− 1 and Rp(2

k−1a) 6≡ a (mod 2)} =
p− L2k(p)

2
.

Whereas their Conjecture 2.1 is true for 2k = 2 and 2k = 4 (see [15, Lemma
2.2] or Corollary 13):

fp(2) =

{

p−1
2 if p ≡ 1 (mod 4)
p+1
2 if p ≡ −1 (mod 4)

and fp(4) =



















p−1
2 if p ≡ 1 (mod 8)
p−3
2 if p ≡ 3 (mod 8)
p+1
2 if p ≡ −1 (mod 8)
p+3
2 if p ≡ −3 (mod 8)

we will prove in Corollary 14 that it is not true for 2k = 8: if p ≡ 3 (mod 16)
then fp(8) = (p+ 1)/2 = (p+ 4− L16(p))/2 6= (p− L16(p))/2.

Proposition 12. For p > 2, c > 1 and gcd(p, c) = 1, we have

fp(c) := #{a; 1 ≤ a ≤ p− 1 and Rp(ac) 6≡ a (mod 2)}

=
p− 1

2
−

5S(p, c)− 2S(p, 2c)− 2S(p, 2∗c)

2p
,

where 2∗ · 2 ≡ 1 (mod p).

Proof. By [15, Lemma 2.1] we have

fp(c) =
p− 1

2
−

2p

π2(p− 1)

∑

χ∈X
−
P

χ(c)(5− 2χ(2)− 2χ(2∗))|L(1, χ)|2,

and the desired result follows by using (5) and the definition of M(p, c). �

Corollary 13. Let c > 2 be even and p coprime with c. We have

(18) fp(c) =
p

2
+

5S(c, p)− S(2c, p)− 4S(c/2, p)

2c
,
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which depends on p mod 2c only. For example, we have

(19) fp(c) =



















p−1
2 if p ≡ 1 (mod 2c)
p−(c−1)

2 if p ≡ c− 1 (mod 2c)
p+(c−1)

2 if p ≡ c+ 1 (mod 2c)
p+1
2 if p ≡ 2c− 1 (mod 2c).

If p ≡ r (mod 2c) with r > 1, then

(20) fp(c) =
p− 1

2
−

5S(r, c)− 2S(r, 2c)− 2S(r, c/2)

2r
.

Proof. To obtain (18), use (7): S(p, d) = F (p, d)− pS(d, p)/d, with F (p, d) :=
p2−3dp+d2+1

3d , and notice that 5F (p, c) − 2F (p, 2c) − 2F (p, c/2) = −p. Then
(19) follows using (7). To obtain (20) apply (7) once again and notice that
5F (c, p)− F (2c, p)− 4F (c/2, p) = −c. �

Corollary 14. For k ≥ 1 and p ≡ 3 (mod 2k+1) we have L2k+1(p) = 3 and

fp(2
k) =

(

p− 1− 2(−1)k
)

/2.

Proof. Use S(3, 2l) = S(3, (−1)l) = (−1)lS(3, 1) = 2
3 (−1)l. �

Since (p − L2k+1(p))/2 = (p − 3)/2 for k ≥ 2 and p ≡ 3 (mod 2k+1), [15,
Conjecture 2.1] is false for k ≥ 2 and k odd, hence false for k = 3.

8. Conclusion

We refer the reader to the bibliography for the recent literature regarding
more complicated mean values of the type

M(f1, f2, c) =
4

φ(f1)φ(f2)

∑

χ1∈X
−
f1

∑

χ1∈X
−
f1

χ(c)L(m,χ1)L(n, χ2),

where m ≥ 1 and n ≥ 1 are both odd (e.g., see [1], [3], [4], [5], [8], [12]).
See also [2] and [16] for recent papers dealing with L-functions.
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