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JOINING OF CIRCUITS IN PSL(2,Z)-SPACE

Qaiser Mushtaq and Abdul Razaq

Abstract. The coset diagrams are composed of fragments, and the frag-

ments are further composed of circuits at a certain common point. A
condition for the existence of a certain fragment γ of a coset diagram

in a coset diagram is a polynomial f in Z[z]. In this paper, we answer

the question: how many polynomials are obtained from the fragments,
evolved by joining the circuits (n, n) and (m,m) , where n < m, at all

points.

1. Introduction

It is well known that the modular group PSL(2,Z) ([1], [3], [4] and [5]) is
generated by the linear fractional transformations x : z → −1

z and y : z → z−1
z

which satisfy the relations

(1.1) x2 = y3 = 1.

The extended modular group PGL(2,Z), is the group of linear fractional trans-
formations z → az+b

cz+d where a, b, c, d ∈ Z and ad− bc = ±1. If t is z → 1
z which

belongs to PGL(2,Z) but not to PSL(2,Z), then x, y, t satisfy the relations

(1.2) x2 = y3 = t2 = (xt)
2

= (yt)
2

= 1.

Let q be a power of a prime p, and PL (Fq) denote the projective line over
the finite field Fq, that is PL (Fq) = Fq ∪ {∞}. The group PGL(2, q) is the

group of all linear fractional transformations z → az+b
cz+d such that a, b, c, d are

in Fq and ad − bc is non-zero, while PSL(2, q) is its subgroup consisting of
transformations (1.1) such that a, b, c, d are in Fq and ad − bc is a quadratic
residue in Fq.

Professor Graham Higman introduced a new type of graph called coset dia-
gram for PGL(2,Z). The three-cycles of y are denoted by small triangles whose
vertices are permuted counter-clockwise by y and any two vertices which are in-
terchanged by x are joined by an edge. The fixed points of x and y are denoted
by heavy dots. Since (yt)

2
= 1 is equivalent to tyt = y−1, therefore t reverses

the orientation of the triangles representing the three-cycles of y. Thus, there is
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no need to make the diagram complicated by introducing t-edges. Consider the
action of PGL(2,Z) on PL(F19). We calculate the permutation representations
x, y and t by (z)x = −1

z , (z) y = z−1
z and (z) t = 1

z respectively. So

x : (0 ∞)(1 18)(2 9)(3 6)(4 14)(5 15)(7 8)(10 17)(11 12)(13 16),

y : (0 ∞ 1)(2 10 18)(3 7 9)(4 15 6)(5 16 14)(13 17 11)(8)(12),

t : (0 ∞)(2 10)(3 13)(4 5)(6 16)(7 11)(8 12)(9 17)(14 15)(1)(18).

Figure 1

For more on coset diagrams, we suggest reading of [2], [8], [9] and [11].
Two homomorphisms α and β from PGL(2,Z) to PGL(2, q) are called con-

jugate if β = αρ for some inner automorphism ρ on PGL(2, q). We call α
to be non-degenerate if neither of x, y lies in the kernel of α. In [7] it has
been shown that there is a one to one correspondence between the conjugacy
classes of non-degenerate homomorphisms from PGL(2,Z) to PGL(2, q) and
the elements θ 6= 0, 3 of Fq under the correspondence which maps each class
to its parameter θ. As in [7], the coset diagram corresponding to the action of
PGL(2,Z) on PL(Fq) via a homomorphism α with parameter θ is denoted by
D (θ, q).

2. Occurrence of fragments in D (θ, q)

By a circuit in a coset diagram for an action of PGL(2,Z) on PL(Fq), we
shall mean a closed path of triangles and edges. Let n1, n2, n3, . . . , n2k be a
sequence of positive integers. The circuit which contains a vertex, fixed by
w = (xy)n1(xy−1)n2 · · · (xy−1)n2k ∈ PSL(2,Z) for some k ≥ 1, we shall mean
the circuit in which n1 triangles have one vertex inside the circuit and n2
triangles have one vertex outside the circuit and so on. Since it is a cycle
(n1, n2, n3, . . . , n2k), so it does not make any difference if n1 triangles have one
vertex outside the circuit and n2 triangles have one vertex inside the circuit
and so on. The circuit of the type

(n1, n2, . . . , n2k′ , n1, n2, . . . , n2k′ , . . . , n1, n2, . . . , n2k′)
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is called a periodic circuit and the length of its period is 2k′. A circuit that is
not of this type is non-periodic.

Consider two simple circuits (n1, n2, n3, . . . , n2k) and (m1,m2,m3, . . . ,m2l).
Let v1 be any vertex in (n1, n2, n3, . . . , n2k) fixed by a word w1 and v2 be
any vertex in (m1,m2,m3, . . . ,m2l) fixed by a word w2. In order to con-
nect these two circuits at v1 and v2, we choose, without loss of generality
(n1, n2, n3, . . . , n2k) and apply w2 on v1 in such a way that w2 ends at v1.
Consequently, we get a fragment say γ, containing a vertex v = v1 = v2 fixed
by the pair w1, w2.

Example 1. We connect the vertex v, fixed by (xy)
(
xy−1

)3
(xy)

3
, in (4, 3)

with the vertex u, fixed by (xy)
3 (
xy−1

)2
of (3, 2) , and compose a fragment γ

as follows

Figure 2

Figure 3

One can see that the vertex v = u in γ (Figure 4) is fixed by a pair of words

(xy)
(
xy−1

)3
(xy)

3
, (xy)

3 (
xy−1

)2
.

The action of PGL(2,Z) on PL(Fq2) yields two components, namely PL(Fq)

and PL(Fq2)�PL(Fq). For sake of simplicity, let PL(Fq) denote the comple-
ment PL(Fq2)�PL(Fq). In what follows, by γ, we shall mean a non-simple
fragment consisting of two connected, non-trivial circuits such that neither of
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Figure 4

them is periodic. The coset diagram D(θ, q) is made of fragments. It is there-
fore necessary to ask, when a fragment exists in D(θ, q). In [6] this question is
answered in the following way.

Theorem 1. Given a fragment, there is a polynomial f in Z[z] such that
(i) if the fragment occurs in D(θ, q), then f(θ) = 0,
(ii) if f(θ) = 0 then the fragment, or a homomorphic image of it occurs in

D(θ, q) or in PL(Fq).

In [6], the method of calculating a polynomial from a fragment is given.
In [10], it has been proven that, the polynomial obtained from a fragment is
unique.

Let the fragment δ, evolved by joining two periodic circuits, and f(θ) be
the polynomial obtained from δ. Then corresponding to each root of f(θ), the
homomorphic image of δ (instead of δ) exists in the respective coset diagrams
[6]. Therefore, we are dealing with only those fragments, which are composed
by joining a pair of non-periodic circuits.

Let γ be formed by joining the vertex v1 of one circuit with the vertex v2
of the other circuit, then we denote this point of connection by v1 ↔ v2. Note
that v1 ↔ v2 is not a unique point of connection for γ. The following theorems
proved in [10], are useful for finding all the points of connection for γ.

Theorem 2. Let the fragment γ be constructed by joining a vertex v1 of
(n1, n2, n3, . . . , n2k) with the vertex v2 of (m1,m2, . . . ,m2l). Then γ is obtain-
able also, if the vertex (v1)w of (n1, n2, n3, . . . , n2k) is joined with the vertex
(v2)w of (m1,m2, . . . ,m2l).

Theorem 3. Let P be the set of words such that for any w ∈ P, both vertices
(v1)w and (v2)w lie on the circuits (n1, n2, n3, . . . , n2k) and (m1,m2, . . . ,m2l).
Let s be the number of points of connection of the circuits to compose γ. Then
s = |P |.
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Example 2. As in Example 1, the vertex v in (4, 3) is connected with the
vertex u in (3, 2) , and a fragment γ is evolved. Then one can see that

P =
{
y, y−1, e, x, xy, xy−1, xyx, xyxy, xyxy−1

}
is the set of words such that for any w ∈ P, both vertices (v)w and (u)w lie
on (4, 3) and (3, 2) . So by Theorem 2, the same fragment γ is formed if we join

(v) y with (u) y, (v) y−1 with (u) y−1, (v) e with (u) e, (v)x with (u)x,

(v)xy with (u)xy, (v)xy−1 with (u)xy−1, (v)xyx with (u)xyx,

(v)xyxy with (u)xyxy or (v)xyxy−1 with (u)xyxy−1.

Since |P | = 9, there are nine points of connection

(v) y ↔ (u) y, (v) y−1 ↔ (u) y−1, (v) e↔ (u) e, (v)x↔ (u)x, (v)xy ↔ (u)xy,

(v)xy−1 ↔ (u)xy−1, (v)xyx↔ (u)xyx, (v)xyxy ↔ (u)xyxy

and (v)xyxy−1 ↔ (u)xyxy−1

of (4, 3) and (3, 2) to compose γ.

Let a fragment γ (Figure 5) occur in a coset diagram. Since a coset diagram

Figure 5

admits a vertical axis of symmetry, the mirror image of γ under the permutation
t will also occur. Through-out this paper, we denote the mirror image of a

Figure 6
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fragment γ by γ∗. If w = xyη1xyη2 · · ·xyηn (η = 1 or −1) is a word, then let

w
∗

= xy−η1xy−η2 · · ·xy−ηn .
If a vertex v is fixed by w, then the vertex fixed by w∗ is denoted by v∗.

Remark 1. Since t reverses the orientation of the triangles representing the
three-cycles of y (as reflection does), so if γ have a vertex v fixed by the pair
w1, w2, then obviously its mirror image γ∗ contains a vertex v∗ fixed by the
pair w

∗

1 , w
∗

2 . Since D(θ, q) has a vertical axis of symmetry, therefore if γ ex-
ists in D(θ, q), then its mirror image γ∗ also exists in D(θ, q). So condition
for the existence of γ and γ∗ in D(θ, q) is the same, implying that, a unique
polynomial is obtained from γ and γ∗. There are certain fragments which have
the same orientations as those of their mirror images. These kinds of frag-
ments admits a vertical axis of symmetry and may have fixed points of t.
A fragment γ containing a vertex v fixed by the pair w1, w2, has the same
orientations as that of its mirror image if and only if it contains a vertex
v∗ fixed by the pair w

∗

1 , w
∗

2 . For example, the fragment formed by joining a
vertex v1, fixed by (xy)

n1 (xy−1)n2 in (n1, n2) with the vertex v2, fixed by

(xy)
m1+n1

2

(
xy−1

)m2
(xy)

m1−n1
2 in (m1,m2) has the same orientation as that of

its mirror image. Diagrammatically, it means: Consider the circuit (n, n) and

Figure 7

(m,m) , where n < m. Let us join (n, n) and (m,m) at a certain point, and
obtain a fragment γ. As, a fragment has many points of connection in (n, n)
and (m,m) . So if we change the point of connection in (n, n) and (m,m) , it is
not necessary that we get a fragment different from γ. It is therefore necessary
to ask, how many distinct fragments (polynomials), we obtain, if we join the
circuits (n, n) and (m,m) at all points of connection? In this paper, we not only
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Figure 8

Figure 9

give the answer of this question, but also mention those points of connection
in (n, n) and (m,m) , which are important. There is no need to join (n, n) and
(m,m) at the points, which are not mentioned as important. Because if we join
(n, n) and (m,m) at such a point, we obtain a fragment, which we have already
obtained by joining at important points.

Remark 2. Recall, if w = xyη1xyη2 · · ·xyηn (η = 1 or −1) is a word, then w
∗

=
xy−η1xy−η2 · · ·xy−ηn . If a vertex v is fixed by w, then the vertex fixed by w∗ is
denoted by v∗. In Figures 8 and 9, one can see that, for each i = 1, 2, 3, . . . , n
and j = 1, 2, 3, . . . ,m we have

e∗i = e3n−(i−1), f
∗
i = f3n−(i−1), u

∗
j = u3m−(j−1) and v∗j = v3m−(j−1).
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Since the number of vertices in each circuit (n, n) and (m,m) is 6n and 6m
respectively. So there are 36nm points of connection in (n, n) and (m,m) . We
connect a vertex in (n, n) with the vertex in (m,m) and compose a fragment. By
using Theorem 3, we count all the points of connection in (n, n) and (m,m) for
this fragment. Then we check whether the fragment has the same orientation
as that of its mirror image or not. If the fragment has different orientation
as that of its mirror image, then we double its points of connection, as there
are same number of points of connection for the mirror image of the fragment.
After that, we connect (n, n) and (m,m) at one of the remaining points. This
process continues until all the points of connection, 36nm of these circuits are
exhausted. Hence we get all fragments composed by joining (n, n) and (m,m)
at all points.

We first prove some theorems, which are used in our main result.

Theorem 4. There are n distinct fragments evolved, as a result of joining
the vertex f3n in (n, n) with the vertices u3l+1, where l = 0, 1, 2, . . . , n − 1, in
(m,m) . Moreover total number of points of connection of these fragments, and

their mirror images, are 6
∑n−1
l=0 (l + 2).

Proof. Let us join the vertex f3n, fixed by (xy)
n (
xy−1

)n
with the vertices

u3l+1, fixed by (xy)
l (
xy−1

)m
(xy)

m−l
and obtain a class of fragments γl. Then

Figure 10

P = {y, y−1, e, x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)
l
x, (xy)

l
xy−1, (xy)

l+1}
is the set of words such that for any w ∈ P, both the vertices (f3n)w and
(u3l+1)w lie on (n, n) and (m,m) respectively. Since |P | = 3 (l + 2) , therefore
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by Theorem 3, each fragment γl has 3 (l + 2) points of connection. From Figure
10, it is clear that, all fragments in {γl : l = 0, 1, 2, . . . , n− 1} have different
number of triangles. Therefore all these fragments are different and none of
them is a mirror image of the other. Also Figure 10 shows that, no fragment
has a vertical axis of symmetry, implying that none of them has the same
orientation as that of its mirror image.

Hence |γl| = n, so there are 3
∑n−1
l=0 (l + 2) points of connection for the frag-

ments in {γl : l = 0, 1, 2, . . . , n− 1} . Since the same number of points of connec-
tion for the mirror images of the fragments in {γl : l = 0, 1, 2, . . . , n− 1} . Hence

there are 6
∑n−1
l=0 (l + 2) points of connection for the fragments in {γl : l = 0, 1 ,

2, . . . , n− 1} and their mirror images. �

Theorem 5. If the vertex f3n in (n, n) is connected with the vertices v3l+1

in (m,m) , then there are n distinct fragments, and there are 6
∑n−1
l=0 (l + 2)

points of connection of these fragments and their mirror images.

The proof is similar to that of Theorem 4, with the only difference that the
set of fragments obtained, is denoted by {γ′l : l = 0, 1, 2, . . . , n− 1} .

Theorem 6. If the vertex e3n in (n, n) is connected with the vertices u3l′+1,
where l′ = 1, 2, . . . , n − 1, in (m,m) , then there are n − 1 distinct fragments,

and there are 6
∑n−1
l′=1 (l′ + 2) points of connection of these fragments and their

mirror images.

The proof is similar to that of Theorem 4, with the only difference that the
set of fragments obtained, is denoted by {λl′ : l′ = 1, 2, . . . , n− 1} .

Theorem 7. If the vertex e3n in (n, n) is connected with the vertices v3l′+1 in

(m,m) , then there are n− 1 distinct fragments, and there are 6
∑n−1
l′=1 (l′ + 2)

points of connection of these fragments and their mirror images.

The proof is similar to that of Theorem 4, with the only difference that the
set of fragments obtained, is denoted by

{
λ′l′ : l′ = 1, 2, 3, . . . , n− 1

}
.

Let r =

{
0 if m+ n is even integer
1 if m+ n is odd integer.

Theorem 8. If the vertex f3n in (n, n) is connected with the vertices u3p+1,
where p = m+n+r

2 , m+n+2+r
2 , . . . ,m−1, in (m,m) , then there are 1

2 (m− n− r)
distinct fragments, and there are 3 (n+ 2) (m− n− 1) points of connection of
these fragments and their mirror images.

Proof. Let us join the vertex f3n, fixed by (xy)
n (
xy−1

)n
with the vertices

u3p+1, fixed by (xy)
p (
xy−1

)m
(xy)

m−p
and obtain a class of fragments µp.

Then

P =

{
x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)

n−1
x, (xy)

n−1
xy−1, (xy)

n
,

(xy)
n
x, (xy)

n
xy−1, (xy)

n+1
, e, y−1, y

}
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Figure 11

is the set of words such that for any w ∈ P , both the vertices (f3n)w and
(u3p+1)w lie on (n, n) and (m,m) respectively. By Theorem 3, each fragment
µp has |P | = 3 (n+ 2) points of connection.

Let µh, µk ∈
{
µp
}
, then µk is obtained by joining f3n with u3k+1 and µh is

obtained by joining f3n with u3l+1.
Let µh and µk be the same fragments. This means that µh is obtainable

also, if we join f3n with u3k+1, implying that f3n ↔ u3k+1 is one of the points
of connection for µh. So by Theorem 2, there exists a word w ∈ P such that
(f3n)w = f3n and (u3k+1)w = u3h+1. There is only word e ∈ P for which
(f3n)w = f3n, but (u3l+1) e 6= u3k+1. Hence µh and µk are distinct fragments.
Since p = m+n+r

2 , m+n+2+r
2 , . . . ,m− 1, therefore |µp| = 1

2 (m− n− r) .
Let µh and µk be the mirror images of each other, that is µh = µ∗k. Then

by Remark 1, µh is obtainable also, if we join f∗3n, with u∗3k+1, implying that
f∗3n ↔ u∗3k+1 is one of the points of connection for γh. So by Theorem 2, there
exists a word w ∈ P such that (f3n)w = f∗3n and (u3h+1)w = u∗3k+1. There

is only one word (xy)
n
x ∈ P for which (f3n)w = f∗3n. Now (u3h+1) (xy)

n
x =

u∗3(m+n−h)+1, this implies that for k = m+n−h, the fragments µk and µh are

mirror images of each other. Now for all h ∈
{
m+n+r

2 , m+n+2+r
2 , m+n+4+r

2 , . . . ,
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m− 1}�m+n
2 , we have k = m + n − h < m+n+r

2 , implying that µm+n−h /∈{
µp
}
. But for h = m+n

2 , we get m + n − h = m+n
2 , therefore µm+n

2
has the

same orientation as that of its mirror image.
Let m + n be an even integer, then there is only one fragment µm+n

2
∈{

µp
}

having the same orientation as that of its mirror image, and all other
1
2 (m− n− 2) fragments have different orientations from their mirror images.
Hence there are

2|P |
(
m− n− 2

2

)
+ |P | = 6 (n+ 2)

(
m− n− 2

2

)
+ 3 (n+ 2)

= 3 (n+ 2) (m− n− 1)

points of connection for the fragments in
{
µp
}

and their mirror images.

Let m + n be an odd integer, then all fragments in
{
µp
}

have different
orientations from their mirror images. Hence there are

2|P |
(
m− n− 1

2

)
= 6 (n+ 2)

(
m− n− 1

2

)
= 3 (n+ 2) (m− n− 1)

points of connection for the fragments in
{
µp
}

and their mirror images. �

Theorem 9. If the vertex f3n in (n, n) is connected with the vertices v3p+1,
where p = m+n+r

2 , m+n+2+r
2 , . . . ,m−1, in (m,m) , then there are 1

2 (m− n− r)
distinct fragments, and there are 3 (n+ 2) (m− n− 1) points of connection of
these fragments and their mirror images.

The proof is similar to that of Theorem 8, with the only difference that the
set of fragments obtained, is denoted by

{
µ′p
}
.

Theorem 10. If the vertex e3n in (n, n) is connected with the vertices u3p+1,
where p = m+n+r

2 , m+n+2+r
2 , . . . ,m−1, in (m,m) , then there are 1

2 (m− n− r)
distinct fragments, and there are 3 (n+ 2) (m− n− 1) points of connection of
these fragments and their mirror images.

The proof is similar to that of Theorem 8, with the only difference that the
set of fragments obtained, is denoted by {νp} .

Theorem 11. If the vertex e3n in (n, n) is connected with the vertices v3p+1,
where p = m+n+r

2 , m+n+2+r
2 , . . . ,m−1, in (m,m) , then there are 1

2 (m− n− r)
distinct fragments and there are 3 (n+ 2) (m− n− 1) points of connection of
these fragments and their mirror images.

The proof is similar to that of Theorem 8, with the only difference that the
set of fragments obtained, is denoted by

{
ν′p
}
.

Let σ =

{
0 if n is even
1 if n is odd.
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Theorem 12. If the vertices e3i, where i = 1, 2, 3, . . . , n−(σ+2)
2 , in (n, n) are

connected with the vertices u3j+1, where j = 1, 2, 3, . . . ,m− 1, in (m,m), then
there are 1

2 (n− (σ + 2)) (m− 1) different fragments, and there are

6 (n− (σ + 2)) (m− 1)

points of connection of these fragments and their mirror images.

Proof. Let us join the vertices e3i, fixed by
(
xy−1

)n−i
(xy)

n (
xy−1

)i
with the

vertices u3j+1, fixed by (xy)
j (
xy−1

)m
(xy)

m−j
and obtain a class of fragments

α(i,j). Then P = {y, y−1, e, x, xy−1, xy} is the set of words such that for any w ∈

Figure 12

P, both the vertices (e3i)w and(u3j+1)w lie on (n, n) and (m,m) respectively.
Since |P | = 6, therefore by Theorem 3, each fragment α(i,j) has 6 points of
connection.

Let α(h1,k1), α(h2,k2) ∈
{
α(i,j)

}
. Then α(h1,k1) is obtained by joining e3h1

with u3k1+1 and α(h2,k2) is obtained by joining e3h2 with u3k2+1.
Let α(h1,k1) and α(h2,k2) be the same fragments. This means that α(h1,k1)

is obtainable also, if we join e3h2
with u3k2+1, implying that e3h2

↔ u3k2+1 is
one of the 6 points of connection for α(h1,k1). So by Theorem 2, there exists
a word w ∈ P such that (e3h1)w = e3h2 and (u3k1+1)w = u3k2+1. There
is only word xy−1 ∈ P for which (e3h1

)w = e3h2
where h2 = h1 + 1, but

(u3k1+1)xy−1 6= u3k2+1. Hence α(h1,k1) and α(h2,k2) are distinct fragments.
Let α(h1,k1) and α(h2,k2) be the mirror images of each other, that is α(h1,k1) =

α∗(h2,k2)
. Then by Remark 1, α(h1,k1) is obtainable also, if we join e∗3h2

with

u∗3k2+1, implying that e∗3h2
↔ u∗3k2+1 is one of the 6 points of connection

for α(h1,k1). So there exists a word w ∈ P such that (e3h1
)w = e∗3h2

and
(u3k1+1)w = u∗3k2+1. There is only word x ∈ P for which (e3h1

)w = e3h1+1 =
e∗3(n−h1)

. Now (u3k1+1)x = u3k1 = u∗3(m−k1)+1, this implies that for h2 = n−h1
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and k2 = m−k1, α(h1,k1) and α(h2,k2) are the mirror images of each other. But

for all h1 ∈
{

1, 2, 3, . . . , n−(σ+2)
2

}
, we have h2 = n − h1 > 1, 2, . . . , n−(σ+2)

2 ,

implying that α(h2,k2) = α(n−h1,m−k1) /∈
{
α(i,j)

}
. Therefore α(h1,k1), α(h2,k2) ∈{

α(i,j)

}
are not the mirror images of each other.

Hence |α(i,j)| = 1
2 (n− (σ + 2)) (m− 1) , so there are 3 (n− (σ + 2)) (n− 1)

points of connection for the fragments in
{
α(i,j)

}
. Since the same number

of points of connection for the mirror images of the fragments in
{
α(i,j)

}
.

Therefore the total number of points of connection for the fragments in
{
α(i,j)

}
and their mirror images are 6 (n− (σ + 2)) (m− 1). �

Theorem 13. If the vertices e3i, where i = 1, 2, 3, . . . , n−(σ+2)
2 , in (n, n) are

connected with the vertices v3j+1, where j = 1, 2, 3, . . . , n − 1, in (m,m), then
there are 1

2 (n− (σ + 2)) (m− 1) different fragments, and there are

6 (n− (σ + 2)) (m− 1)

points of connection of these fragments and their mirror images.

The proof is similar to that of Theorem 12, with the only difference that the

set of fragments obtained, is denoted by
{
α′(i,j)

}
.

Theorem 14. If the vertices f3i, where i = 1, 2, 3, . . . , n−(σ+2)
2 , in (n, n) are

connected with the vertices u3j+1, where j = 1, 2, 3, . . . , n− 1, in (m,m), then
there are 1

2 (n− (σ + 2)) (m− 1) different fragments, and there are

6 (n− (σ + 2)) (m− 1)

points of connection of these fragments and their mirror images.

The proof is similar to that of Theorem 12, with the only difference that the

set of fragments obtained, is denoted by
{
β(i,j)

}
.

Theorem 15. If the vertices f3i, where i = 1, 2, 3, . . . , n−(σ+2)
2 , in (n, n) are

connected with the vertices v3j+1, where j = 1, 2, 3, . . . , n − 1, in (m,m), then
there are 1

2 (n− (σ + 2)) (m− 1) different fragments, and there are

6 (n− (σ + 2)) (m− 1)

points of connection of these fragments and their mirror images.

The proof is similar to that of Theorem 12, with the only difference that the

set of fragments obtained, is denoted by
{
β′(i,j)

}
.

Recall σ=

{
1 if n is odd
0 if n is even

and let j′=

{
1, 2, 3, . . . ,m− 1 if n is odd
1, 2, 3, . . . , m−σ2 if n is even,

σ′ =

{
1 if m is odd
0 if m is even.
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Theorem 16. If the vertex e 3(n−σ)
2

in (n, n) is connected with the vertices

u3j′+1 in (m,m), then there are

{
m− 1 if n is odd
m−σ′

2 if n is even
, different fragments,

and there are

{
12 (m− 1) if n is odd
6 (m− 1) if n is even

, points of connection of these frag-

ments and their mirror images.

Proof. Let us join the vertex e 3(n−σ)
2

, fixed by
(
xy−1

)n+σ
2 (xy)

n (
xy−1

)n−σ
2 with

the vertices u3j′+1, fixed by (xy)
j′ (

xy−1
)m

(xy)
m−j′

and obtain a class of frag-

ments α(n−σ2 ,j′). Then P = {y, y−1, e, x, xy−1, xy} is the set of words such that

Figure 13

for any w ∈ P, both the vertices
(
e 3(n−σ)

2

)
w and(u3j′+1)w lie on (n, n) and

(m,m) respectively. Since |P | = 6, therefore by Theorem 3, each fragment
α(n−σ2 ,j′) has 6 points of connection.

We prove in Theorem 12 that all fragments in
{
α(i,j)

}
are distinct, and the

mirror image of α(h1,k1) ∈
{
α(i,j)

}
is α(n−h1,m−k1). Similarly we have, all the

fragments in
{
α(n−σ2 ,j′)

}
are different, and the mirror image of α(n−σ2 ,k′1)

∈{
α(n−σ2 ,j′)

}
is α(n+σ

2 ,m−k′1)
. Now

(i) If n is odd, then α(n+1
2 ,m−k′1)

/∈
{
α(n−1

2 ,j′)

}
, this shows that none of the

fragments in
{
α(n−1

2 ,j′)

}
is the mirror image of the other. Hence |α(n−1

2 ,j′)| =
m − 1, and so there are 12 (m− 1) points of connection for the fragments of{
α(n−1

2 ,j′)

}
and their mirror images.
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(ii) If n is even, and m is an odd integer, then for all k′1 ∈
{

1, 2, 3, . . . , m−12

}
,

we have k′1 > m−1
2 implying that α(n2 ,m−k

′
1)

/∈
{
α(n2 ,j′)

}
. So none of the

fragments in
{
α(n2 ,j′)

}
is the mirror image of the other, implies that |α(n2 ,j′)

| =
m−1
2 . Hence total number of points of connection for the fragments in

{
α(n2 ,j′)

}
and their mirror images are 2|P |

(
m−1
2

)
= 6 (m− 1) .

(iii) If n and m are both even, then for all k′1 ∈
{

1, 2, 3, . . . , m2
}
\m2 , we

have k′1 >
m
2 implying that α(n2 ,m−k

′
1)
/∈
{
α(n2 ,j′)

}
, and for k′1 = m

2 , we have

α(n2 ,m−k
′
1)

= α(n2 ,
m
2 ) ∈

{
α(n2 ,j′)

}
. This shows that, for j′ < m

2 , none of the

fragments in
{
α(n2 ,j′)

}
is the mirror image of the other and α(n2 ,

m
2 ) is the mirror

image of itself, implies that |α(n2 ,j′)
| = m

2 . Hence there are 2|P |
(
m−2
2

)
+ |P | =

6 (m− 1) points of connection for the fragments in
{
α(n2 ,j′)

}
and their mirror

images. �

Theorem 17. If the vertex e 3(n−σ)
2

in (n, n) is connected with the vertices

v3j′+1 in (m,m), then there are

{
m− 1 if n is odd
m−σ′

2 if n is even
, different fragments,

and there are

{
12 (m− 1) if n is odd
6 (m− 1) if n is even

, points of connection of these frag-

ments and their mirror images.

The proof is similar to that of Theorem 16, with the only difference that the

set of fragments obtained, is denoted by

{
α′

(n−σ2 ,j′)

}
.

Theorem 18. If the vertex f 3(n−σ)
2

in (n, n) is connected with the vertices

u3j′+1 in (m,m), then there are

{
m− 1 if n is odd
m−σ′

2 if n is even
, different fragments,

and there are

{
12 (m− 1) if n is odd
6 (m− 1) if n is even

, points of connection of these frag-

ments and their mirror images.

The proof is similar to that of Theorem 16, with the only difference that the

set of fragments obtained, is denoted by
{
β(n−σ2 ,j′)

}
.

Theorem 19. If the vertex f 3(n−σ)
2

in (n, n) is connected with the vertices

v3j′+1 in (m,m), then there are

{
m− 1 if n is odd
m−σ′

2 if n is even
, different fragments,

and there are

{
12 (m− 1) if n is odd
6 (m− 1) if n is even

, points of connection of these frag-

ments and their mirror images.
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The proof is similar to that of Theorem 16, with the only difference that the

set of fragments obtained, is denoted by

{
β(

n−σ′
2 ,j′

)} .
Theorem 20. Let η be the fragment obtained by joining the vertex f3n in (n, n)
with the vertex v3m in (m,m). Then there are 12(n + 1) points of connection
for η and its mirror image.

Proof. Let us join the vertex f3n, fixed by (xy)n(xy−1)n in (n, n) with the
vertex v3m, fixed by (xy)m(xy−1)m in (m,m) , and obtain a fragment η.

Figure 14

Then

P =


x, xy−1, xy, xyx, xyxy−1, (xy)2, . . . , (xy)

n−1
x, (xy)

n−1
xy−1, (xy)

n
,

(xy)
n
x, (xy)

n
xy−1, (xy)

n+1
, y−1, y, yx, yxy−1, yxy, yxyx, yxyxy−1,

yxyxy, yxyxyx, . . . , (yx)
n−1

y−1, (yx)
n−1

y, (yx)
n
, (yx)

n
y−1, (yx)

n
y, e


is the set of words such that for any w ∈ P, both the vertices (f3n)w and
(v3m)w lie on (n, n) and (m,m) respectively. By Theorem 3, η has |P | =
6(n+ 1) points of connection.

Let η has the same orientation from its mirror image η∗. Then by Remark
1, η is obtainable also, if we join f∗3n with v∗3m, implying that f∗3n ↔ v∗3m is one
of the points of connection for η. So by Theorem 2, there exists a word w ∈ P
such that (f3n)w = f∗3n and (v3m)w = v∗3m. But P does not contain such a
word. Therefore η has different orientation from its mirror image η∗. Hence
there are 12 (n− 1) points of connection for the η and its mirror image η∗. �
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Theorem 21. Let η′ be the fragment obtained by joining the vertex e3n in (n, n)
with the vertex v3m in (m,m). Then there are 12(n + 1) points of connection
for η′ and its mirror image.

The proof is similar to that of Theorem 20.

Remark 3. In Figures 8 and 9, one can see that the vertices f3n and e3n are
fixed by the same word (xy)

n (
xy−1

)n
. Moreover the vertices u3k+1 and v3k+1,

for some k ∈ {1, 2, 3, . . . , n− 1} , are fixed by the same word

(xy)
3k (

xy−1
)m

(xy)
m−3k

.

Since γk, γ
′
k, λk and λ′k are composed by joining f3n with u3k+1, f3n with

v3k+1, e3n with u3k+1 and e3n with v3k+1 respectively. Therefore γk, γ
′
k, λk

and λ′k contain a vertex fixed by a pair of words

(xy)
n (
xy−1

)n
, (xy)

k (
xy−1

)m
(xy)

m−k
.

Hence {γl}�γ0, {γ′l}�γ′0, {λl′} and
{
λ′l′
}

are the same sets of fragments.
Similarly it is easy to show that

(i) γ0 and γ′0 are the same fragments.
(ii)

{
µp
}
,
{
µ′p
}
, {νp} and

{
ν′p
}

are the same sets of fragments.

(iii)
{
α(i,j)

}
,
{
α′(i,j)

}
,
{
β(i,j)

}
and

{
β′(i,j)

}
are the same sets of fragments.

(iv)
{
α(n−σ2 ,j′)

}
,

{
α′

(n−σ2 ,j′)

}
,
{
β(n−σ2 ,j′)

}
and

{
β′(n−σ2 ,j′)

}
are the same

sets of fragments.
(v) η and η′ are the same fragments.

Thus, we are left with five, {γl} ,
{
µp
}
,
{
α(i,j)

}
,
{
α(n−σ2 ,j′)

}
and {η} , sets of

fragments. Now we show that these sets are mutually disjoint.
It is clear from figures 11 to 14 that none of the fragments in

{
µp
}

,
{
α(i,j)

}
,{

α(n−σ2 ,j′)

}
and {η} contains a vertex fixed by

(xy)
n (
xy−1

)n
, (xy)

l (
xy−1

)m
(xy)

m−l
, where l < n.

This implies that

(2.1) {γl} ∩
{
µp
}

= {γl} ∩
{
α(i,j)

}
= {γl} ∩

{
α(n−σ2 ,j′)

}
= {γl} ∩ {η} = φ.

From Figures 12 to 14, one can see that, none of the fragments in
{
α(i,j)

}
,{

α(n−σ2 ,j′)

}
and {η} contains a vertex fixed by

(xy)
n (
xy−1

)n
, (xy)

p (
xy−1

)m
(xy)

m−p
, where p > n.

So

(2.2)
{
µp
}
∩
{
α(i,j)

}
=
{
µp
}
∩
{
α(n−σ2 ,j′)

}
=
{
µp
}
∩ {η} = φ.
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From Figures 13 to 14, it is quite obvious that none of the fragments in{
α(n−σ2 ,j′)

}
and {η} contains a vertex fixed by(
xy−1

)n−i
(xy)

n (
xy−1

)i
, (xy)

j (
xy−1

)m
(xy)

m−j
,

where i < n−σ
2 . Therefore

(2.3)
{
α(i,j)

}
∩
{
α(n−σ2 ,j′)

}
=
{
α(i,j)

}
∩ {η} = φ.

From Figure 13, it is easy to verify that none of the fragments in
{
α(n−σ2 ,j′)

}
contains a vertex fixed by (xy)

n (
xy−1

)n
,(xy)

m (
xy−1

)m
. This implies that

(2.4)
{
α(n−σ2 ,j′)

}
∩ {η} = φ.

From equations 2.1 to 2.4, we have
{
µp
}
,
{
α(i,j)

}
,
{
α(n−σ2 ,j′)

}
and {η} are

mutually disjoint.

Let

ρ =


0 if n is even and m is odd
0 if n is odd and m is even
1 if both n and m are odd
2 if both n and m are even.

Now we are in a position, to prove our main result.

Theorem 22. There are 1
2 (nm+ 2 + ρ) polynomials obtained by joining the

circuit (n, n) with (m,m) at all points.

Proof. Let us connect the following vertices
(i) f3n with u3l+1, u3p+1.
(ii) e3i with u3j+1.
(iii) e 3(n−σ)

2
with u3j′+1.

(iv) f3n with v3m.
Then by Theorems 4, 8, 12, 16, 20 and Remark 3, we obtain the set of fragments

F =
{
γl, µp, α(i,j), α(n−σ2 ,j′), η

}
, and there are

S = 12

n−1∑
l=0

(l + 2) + 12

n−1∑
l′=1

(l′ + 2) + 12 (n+ 2) (m− n− 1)

+ 24(n− 1)(m− 1) + 24 (n+ 1)

points of connection of these fragments and their mirror images. Since S =
36nm, so S is the total points of connection in (n, n) and (m,m). Also
|F | = 1

2 (nm+ 2 + ρ) , hence there are 1
2 (nm+ 2 + ρ) different fragments, com-

posed, by joining (n, n) and (m,m) at all points of connection. Since a unique
polynomial is obtained from a fragment, so there are 1

2 (nm+ 2 + ρ) polyno-
mials obtained by joining the circuit (n, n) with (m,m) at all points. �



JOINING OF CIRCUITS 2065

Conclusion

Total number of points of connection in (n, n) and (m,m) are 36nm, out
of which only 1

2 (nm+ 2 + ρ) points of connection are important. There is
no need to join (n, n) and (m,m) at the points, which are not mentioned as
important. Because if we join (n, n) and (m,m) at such a point v, we obtain a
fragment, which we have already obtained by joining at important points.

Example 3. Consider two circuits (2, 2) and (3, 3) . By Theorem 22 the set of

Figure 15

Figure 16

all fragments evolved by joining the circuits (n, n) and (m,m) at all points, is{
γl, µp, α(i,j), α(n−σ2 ,j′), η

}
. Therefore {γ0, γ1, α(1,1), η} is set of all fragments

evolved by joining the circuits (2, 2) and (3, 3) .
1. The fragment γ0 is obtained by joining the vertex f6, fixed by

(xy)2(xy−1)2

in (2, 2) with the vertex u1, fixed by (xy−1)3(xy)3 in (3, 3) . By using the method
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Figure 17

of calculating a polynomial from a fragment given in [6], the polynomial evolved
from γ0 is

f1 (θ) = −θ8 + 11θ7 − 48θ6 + 106θ5 − 126θ4 + 80θ3 − 25θ2 + 3θ.

2. The fragment γ1 is obtained by joining the vertex f6, fixed by

(xy)2(xy−1)2

in (2, 2) with the vertex u4, fixed by (xy)(xy−1)3(xy)2 in (3, 3) . By using the

Figure 18

method of calculating a polynomial from a fragment, the polynomial evolved
from γ1 is

f2 (θ) = −θ7 + 9θ6 − 31θ5 + 50θ4 − 35θ3 + 5θ2 + 3θ.

3. The fragment α(1,1) is obtained by joining the vertex e3, fixed by

(xy−1)(xy)2(xy−1)
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in (2, 2) with the vertex u4, fixed by (xy)(xy−1)3(xy)2 in (3, 3) . By using the

Figure 19

method of calculating a polynomial from a fragment, the polynomial evolved
from α(1,1) is

f3 (θ) = θ8 − 11θ7 + 48θ6 − 106θ5 + 124θ4 − 70θ3 + 11θ2 + 3θ.

4. The fragment η is obtained by joining the vertex f6, fixed by (xy)2(xy−1)2 in
(2, 2) with the vertex v9, fixed by (xy)3(xy−1)3 in (3, 3) . By using the method

Figure 20

of calculating a polynomial from a fragment, the polynomial evolved from η is

f4 (θ) = −θ4 + 5θ3 − 7θ2 + 3θ.

Since the total number of points of connection in (n, n) and (m,m) are 36nm.
So there are 216 points of connection in (2, 2) and (3, 3) . Theorem 22 assures
us, in order to create all fragments by joining (2, 2) and (3, 3) , we just have to
connect only 4 points (mentioned in Theorem 22). There is no need to connect
(2, 2) and (3, 3) at the remaining 212 points.
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Hence there are 216 points of connection in (2, 2) and (3, 3) , which compose
only 4 distinct fragments γ0, γ1, α(1,1) and η. The polynomials obtained from
these fragments are

f1 (θ) = −θ8 + 11θ7 − 48θ6 + 106θ5 − 126θ4 + 80θ3 − 25θ2 + 3θ,

f2 (θ) = −θ7 + 9θ6 − 31θ5 + 50θ4 − 35θ3 + 5θ2 + 3θ,

f3 (θ) = θ8 − 11θ7 + 48θ6 − 106θ5 + 124θ4 − 70θ3 + 11θ2 + 3θ,

f4 (θ) = −θ4 + 5θ3 − 7θ2 + 3θ.

These polynomials split linearly in suitable Galois fields [6] and corresponding
to each zero θ, we have a coset diagram D (θ, q) [7], and ultimately we obtain
a class of permutation groups.

3. Open problem for future study

Each fragment is related with a polynomial f (θ), which splits linearly in
a suitable Galois field [6] and corresponding to each zero θ, we get a coset
diagram D (θ, q) [7] and hence a permutation group. This shows that each pair
of circuits can be related to a class of groups. In a private communication with
Q. Mushtaq, Professor Graham Higman claims that there must be a common
property in the groups related to a pair of circuits, and he will feel very happy
if some one could find the common property in the groups obtained from the
same pair of circuits. In order to pursue this problem, we first have to deal
with the question: how many distinct fragments (polynomials) are obtained, if
we join the circuits (n, n) and (m,m) at all points of connection?

The answer of this question is given in this article. We are working on the
classes of groups obtained from the pair of circuits (2, 2) and (m,m), where
m ≤ 5. We will share some interesting results regarding this open problem in
a separate paper in the future.
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