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A GENERALIZED COMMON FIXED POINT THEOREM FOR

TWO FAMILIES OF SELF-MAPS

T. Phaneendra

Abstract. Brief developments in metrical fixed point theory are covered
and a significant generalization of recent results obtained in [18], [27],
[32] and [33] is established through an extension of the property (EA) to
two sequences of self-maps using the notions of weak compatibility and
implicit relation.

1. Introduction

In this paper, (X, d) denotes a metric space, fx the image of x ∈ X under
a self-map f on X .

The well-known Banach contraction principle asserts that every contraction
f on a complete metric space X with the choice

d(fx, fy) ≤ qd(x, y) for all x, y ∈ X for some 0 < q < 1(1.1)

has a unique fixed point.
In 1968, Kannan [17] analyzed a substantially new contractive type condition

to ensure the existence of fixed point for maps that have discontinuity in its
domain. Kannan’s result is effective in characterizing metric completeness [45],
though it is independent of Banach’s theorem.

Later, many generalizations of Banach’s result were developed by weaken-
ing the contraction condition (1.1) using various linear, rational and general
contractive type inequalities and relaxing the completeness of the metric space
(cf. [3], [4], [6], [9], [10, 11, 12], [13], and so on).

An extensive collection of various types of contraction mappings and their
comparative study, initiated by Rhoades [36], was further developed by Collaco
and Silva [5], Kinces and Totok [19] and Rhoades [37]. One such an extension of
Banach contranction mapping theorem to a family of self-maps was established
by Kikina and Kikina [18] as follows:
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Theorem 1.1. Let f1, f2, . . . , fk be self-maps on X satisfying the inequalities:

[1 + pd(x, y)]d(fix, fi+1y)(1.2)

≤ p[d(x, fix)d(y, fi+1y) + d(x, fi+1y)d(y, fix)]

+ qmax
{

d(x, y), d(x, fix), d(y, fi+1y),
1
2 [d(x, fi+1y) + d(y, fix)]

}

for all x, y ∈ X, i = 1, 2, . . . , k,

where fk+1 = f1, p ≥ 0 and 0 ≤ q < 1. If X is complete, then the mappings

f1, f2, . . . , fk will have a unique common fixed point.

We see that for k = 1 and p = 0, (1.2) is weaker than (1.1), and the result
of Rhoades [36] follows from Theorem 1.1 when k = 3 and p = 0.

Motivated by the fact that a fixed point of any map can always be viewed
as a common fixed point for it and the identity map, the scope of Banach’s
theorem was widened by extending it to two or more self-maps or nonself-maps
with some boundary conditions under general contraction-type conditions (See
various papers from [1] to [45] in the references).

This paper first covers brief developments in metrical fixed point theory.
Then Theorem 1.1 is generalized through an extension of property (EA) to a
pair of sequences of self-maps and the notions of weakly compatible self-maps
and implicit relation. Interestingly, this will also be a generalization of recent
results obtained in [27], [32] and [33].

2. Brief developments

Self-maps f and r on a metric space (X, d) are known to be commuting if
frx = rfx for all x ∈ X , where fr denotes the composition of f and r. As a
weaker form of it, Sessa [39] introduced weakly commuting maps f and r on
X with the choice:

(2.1) d(frx, rfx) ≤ d(fx, rx) for all x ∈ X.

Many interesting results for commuting and weakly commuting mappings
were established during 70’s and 80’s. One can refer to the works of Das and
Naik [7], Jungck [14], Pant [24], Singh and Singh [44] etc. Weak commutativity
was further generalized as compatible maps by Gerald Jungck [15] and as R-
weakly commutating maps by Pant [25]. In fact, we have:

Definition 2.1. Self-maps f and r on X are said to be R-weakly commuting
if

d(frx, rfx) ≤ Rd(fx, rx) for all x ∈ X for some R > 0.(2.2)

Writing R = 1 in (2.2), we get (2.1) and weak commutativity of f and r fol-
lows from their R-weak commutativity with R = 1, but the reverse implication
is true only when R ≤ 1 as shown in [25].

Splitting the condition (2.2), Pathak et al. [28] gave:
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Definition 2.2. Self-maps f and r on X are said to be R-weakly commuting
of type (Ag) if

d(frx, rrx) ≤ Rd(fx, rx) for all x ∈ X for some R > 0.(2.3)

Interchanging the roles of f and r in Definition 2.2, we get:

Definition 2.3. Self-maps f and r on X are said to be R-weakly commuting
of type (Af ) if

d(ffx, rfx) ≤ Rd(fx, rx) for all x ∈ X for some R > 0.(2.4)

In a comparative study of various weaker forms of commuting maps, Singh
and Tomar [41] remarked that R-weak commutativity is independent of its two
types given in Definition 2.2 and Definition 2.3.

Definition 2.4. Self-maps f and r on X are said to be compatible if

(2.5) lim
n→∞

d(frxn, rfxn) = 0

whenever there exists a sequence 〈xn〉
∞

n=1 ⊂ X such that

(2.6) lim
n→∞

fxn = lim
n→∞

rxn = z for some z ∈ X.

In view of the asymptotic condition (2.5), compatible maps were also known
as asymptotically commuting. It is remarked from [32] that a pair (f, g) of self-
maps can be weakly commuting but there may not be any sequence 〈xn〉

∞

n=1

with the choice (2.6). Such maps are vacuously compatible. In this paper, we
adopt the convention of nonvacuous compatibility. On the other hand, self-
maps f and g are noncompatible if there is a sequence 〈xn〉

∞

n=1 with (2.6) but
lim
n→∞

d(fgxn, gfxn) 6= 0 or +∞.

Pathak and Khan [30] characterized and compared different types of compat-
ibility by splitting the asymptotic condition (2.5) in various ways, and proved
that the compatibility of any type for (f, r) is equivalent to their compatibil-
ity, provided both f and r are continuous. Compatibility and its types find
nice applications in the context of boundary value problems, number theoretic
problems and dynamical programming e.g., see [20, 23, 29, 43].

Though the fixed point theory for a single map without continuity is traced
back to Kannan [17], the following notion was introduced in [26] in the study
of common fixed points for noncompatible and discontinuous maps:

Definition 2.5. Self-maps f and r on X are reciprocally continuous at z ∈ X

if for any sequence 〈xn〉
∞

n=1 ⊂ X with the choice (2.6), we have

lim
n→∞

frxn = fz and lim
n→∞

rfxn = rz.(2.7)

And f and r are reciprocally continuous if and only if they are reciprocally
continuous at each z ∈ X .

This was further weakened by Pant et al. [27] as follows:
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Definition 2.6. Self-maps f and r on X are weakly reciprocally continuous
at z ∈ X if for any sequence 〈xn〉

∞

n=1 ⊂ X with the choice (2.6), we have

lim
n→∞

frxn = fz or lim
n→∞

rfxn = rz.(2.8)

And f and r are weakly reciprocally continuous if and only if they are weakly
reciprocally continuous at each z ∈ X .

With these ideas, Pant et al. [27] proved:

Theorem 2.1. Let f and r be weakly reciprocally continuous self-maps on X

satisfying the inclusion f(X) ⊂ r(X) and the inequality

d(fx, fy) ≤ ad(rx, ry) + bd(fx, rx) + cd(ry, fy) for all x, y ∈ X,(2.9)

where a, b and c are nonnegative real numbers with a + b + c < 1. Suppose

that X is complete and f and r are either compatible or R-weakly commuting

of type (Ag) or (Af ). Then f and r have a unique common fixed point.

Recently, the author with Sivarama Prasad [32] proved:

Theorem 2.2. Let f, g and r be self-maps on X satisfying the inequality

d(fx, gy) ≤ qmax

{

d(rx, ry), d(rx, fx), d(ry, gy),

d(rx, gy) + d(ry, fx)

2

}

for all x, y ∈ X,(2.10)

where 0 < q < 1. Suppose that either (f, r) or (g, r) satisfies the property (EA)
and r(X) is a complete subspace of X. If either (f, r) or (g, r) is R-weakly

commuting of type (Ag) or (Af ), then f, g and r have a unique common fixed

point.

Definition 2.7. A point x ∈ X is called a coincidence point for self-maps f
and r if fx = rx = y, and y is a point of coincidence of f and r in this case.

It may be noted that the existence of coincidence point is not necessary for
a pair of maps to be commuting.

Example 2.1. Let X = R with usual metric d(x, y) = |x − y| for all x ∈ X .
Define fx = x + a and rx = x + b where a 6= b. Then frx = rfx = x + a+ b

but f and r have no coincidence point.

Definition 2.8. Self-maps f and r which commute at their coincidence points
are called coincidentally commuting [8], weakly compatible [16], partially com-
muting [38] or compatible type (N) [40].

Definition 2.9. Let φ : [0,∞) → [0,∞) be a contractive modulus with the
choice φ(0) = 0 and φ(t) < t for t > 0. A contractive modulus φ is upper
semicontinuous (abbreviated as usc) if and only if lim sup

n→∞

φ(tn) ≤ φ(t0) for all

t = t0 and all 〈tn〉
∞

n=1 ⊂ [0,∞) with lim
n→∞

tn = t0.



A GENERALIZED COMMON FIXED POINT THEOREM 1843

With this, Singh and Mishra [42] proved the following result:

Theorem 2.3. Let f, g and r be self-maps on X satisfying the inclusions

(2.11) f(X) ⊂ r(X) and g(X) ⊂ r(X)

and the contractive-type condition

d(fx, gy) ≤ φ

(

max

{

d(rx, ry), d(fx, rx), d(gy, ry),

d(gy, rx) + d(fx, ry)

2

})

for all x, y ∈ X.(2.12)

Suppose that one of f(X), g(X) and r(X) is a complete subspace of X. If (f, r)
and (g, r) are weakly compatible, then the three maps f, g and r will have a

unique common fixed point.

Theorem 2.3 was generalized by the author with Swatmaram in [33] using the
notion of asymptotic regularity under a weaker form of the inequality (2.12),
when the contractive modulus φ is nondecreasing:

Theorem 2.4. Let f, g and r be self-maps on X satisfying the inclusions (2.11)
and the inequality

d(fx, gy) ≤ φ
(

d(rx, ry), d(rx, fx), d(ry, gy),

d(rx, gy), d(ry, fx)
)

for all x, y ∈ X,(2.13)

where φ is a nondecreasing and usc contractive modulus.

Given x0 ∈ X, suppose that

(a) the pair (f, g) is a.r. at x0 with respect to r in the sense that there is

an (f, g) orbit with respect to r with the choice

y2n−1 = fx2n−2 = rx2n−1,

y2n = gx2n−1 = rx2n for n ≥ 1(2.14)

such that lim
n→∞

d(yn, yn+1) = 0.

(b) one of f(X), g(X) and r(X) is orbitally complete at x0, that is every

Cauchy sequence in some orbit (2.14) converges in one of f(X), g(X)
and r(X) respectively.

Then f, g and r will have a common coincidence point. Further, if either (f, r)
or (g, r) is a weakly compatible pair, then f, g and r will have a unique common

fixed point.

To establish a significant generalization of Theorem 1.1, Theorem 2.1, Theo-
rem 2.2 and Theorem 2.4 in the next section, we need following useful notions:

Definition 2.10. Self-maps with choice (2.6) are called tangential maps [38].

This notion was rediscovered in [1] as follows:
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Definition 2.11. Self-maps f and r on X satisfy the property (EA) [1] if (2.6)
holds good for some 〈xn〉

∞

n=1 ⊂ X .

It is interesting to note that nonvacuously compatible, compatible maps of all
types and noncompatible maps are included in the class of self-maps satisfying
the property (EA).

Restricting the commutativity to a smallest subset of the domain of maps,
Singh and Tomar [41] did a nice comparative study of various weaker forms
of commuting maps. In fact, it was observed from [41] that compatibility
and all its types, and R-weak commutativity and its types imply the weak
compatibility. Since two self-maps fail to be weakly compatible only if they
have a coincidence point at which they do not commute, weak compatibility is
the minimal condition for the maps to have a common fixed point.

The following is an easy consequence for weakly compatible maps:

Lemma 2.1. If self-maps f and r are weakly compatible, then their point of

coincidence with respect to a coincidence point will also be a coincidence point

for them.

From the above discussion, we see that weak compatibility and property
(EA) are weaker conditions of compatibility and all its types. Pathak et al.
[28] proved that both these notations are independent of each other.

We support this fact with the following examples:

Example 2.2 (Ex. 1.4, [2]). Let X = [0,∞) with usual metric d(x, y) = |x−y|
for all x ∈ X . Define fx = x2 and rx = x + 2. Choose xn = 2 + 1

n
for n ≥ 1.

Then

lim
n→∞

fxn = lim
n→∞

rxn = 4,

so that f and r satisfy the property (EA). But f and r do not commute at
their coincidence point, namely 2 and hence are not weakly compatible.

Example 2.3. Let X = (1,∞) with usual metric d(x, y) = |x − y| for all
x ∈ X . Define fx = x3 and rx = x2. Then d(fx, gx) = x2(x − 1) = 0 if and
only if x = 0, 1. But 0, 1 /∈ X Thus f and g do not have a coincidence point
at all, though fgx = gfx = x5 for all x ∈ X . That is f and r are vacuously
weakly compatible. But there is no sequence 〈xn〉

∞

n=1 in X satisfying (2.6).

Definition 2.12. A class ℘ of self-maps f on X satisfies the property (EA)
[22] if there is a 〈xn〉

∞

n=1 ⊂ X such that

(2.15) lim
n→∞

fxn = z for some z ∈ X for each f ∈ ℘.

In particular if ℘ consists of only two maps f and r, (2.15) reduces to (2.6).
The property (EA) was extended to two pairs of self-maps by Liu et al. [21]

as given below:
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Definition 2.13. The pairs (f, r) and (g, s) of self-maps on X share the com-
mon property (EA) if there exist sequences 〈xn〉

∞

n=1 and 〈yn〉
∞

n=1 in X such
that

(2.16) lim
n→∞

fxn = lim
n→∞

ryn = lim
n→∞

gxn = lim
n→∞

syn = u for some u ∈ X.

Pathak and Shahzad [31] called (f, g) tangential with respect to (r, s) if (2.16)
holds good for some sequences 〈xn〉

∞

n=1 and 〈yn〉
∞

n=1 in X .
In recent years, the idea of inserting implicit relation in the contraction-

type condition, due to Popa [34, 35], has attracted the researchers because
of its capacity to cover several contractive conditions and unify fixed point
theorems.

In this paper, ψ : R6
+ → R denotes a lower semicontinuous implicit function

with the choice:

(Pa) ψ(l, 0, l, 0, 0, l) > 0 for all l > 0,
(Pb) ψ(l, l, 0, 0, l, l)> 0 for all l > 0.

Example 2.4. Set

ψ(l1, l2, l3, l4, l5, l6) = (1 + pl2)l1 − p(l3l4 + l5l6)− qmax
{

l2, l3, l4,
l5+l6

2

}

,

where p and q have the same choice as given in Theorem 1.1. Then

(Pa) ψ(l, 0, l, 0, 0, l) = (1 + p.0)l− p(l.0 + 0.l)− qmax
{

0, l, 0, 0+l
2

}

= (1− q)l > 0 for all l > 0,

(Pb) ψ(l, l, 0, 0, l, l) = (1 + p.l)l− p(0.0 + l.l)− qmax
{

l, 0, 0, l+l
2

}

= (1− q)l > 0 for all l > 0.

With p = 0 in Example 2.4, we have:

Example 2.5. Let

ψ(l1, l2, l3, l4, l5, l6) = l1 − qmax
{

l2, l3, l4,
l5+l6

2

}

, 0 ≤ q < 1.

Example 2.6. Let ψ(l1, l2, l3, l4, l5, l6) = l1 − [al2 + bl3 + cl4 + e(l5 + l6)],
where a, b, c and e are nonnegative numbers with a+ b+ c+ 2e < 1.
Then

(Pa) ψ(l, 0, l, 0, 0, l) = (1− b − e)l > 0 for all l > 0,
(Pb) ψ(l, l, 0, 0, l, l) = l − (a+ 2e)l = (1− a− 2e)l > 0 for all l > 0.

Example 2.7. Let ψ(l1, l2, l3, l4, l5, l6) = l1 − φ
(

max
{

l2, l3, l4, l5, l6
})

, where
φ is a nondecreasing and usc contractive modulus. Then

(Pa) ψ(l, 0, l, 0, 0, l) = l − φ
(

max
{

0, l, 0, 0, l
})

= l − φ(l) > 0 for all l > 0,

(Pb) ψ(l, l, 0, 0, l, l) = l − φ
(

max
{

l, 0, 0, l, l
})

= l − φ(l) > 0 for all l > 0.

With φ(t) = qt, in Example 2.7 where 0 ≤ q < 1, we get:

Example 2.8. Let ψ(l1, l2, l3, l4, l5, l6) = l1−qmax
{

l2, l3, l4, l5, l6
}

, 0 ≤ q < 1.
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3. Main result and discussion

First, we introduce extensions of the ideas discussed in earlier sections to a
pair of sequences of self-maps:

Given an integer k > 0, consider the sequences {fi}
∞

i=1 and {gi}
∞

i=1 of self-
maps on X such that fk+i = fi and gk+i = gi for all i.

Definition 3.1. The sequences {fi}
∞

i=1 and {gi}
∞

i=1 share the property (EA)
or the sequence {fi}

∞

i=1 is tangential with respect to the sequence {gi}
∞

i=1 if

there exist associated sequences 〈x
(i)
n 〉 ∞

n=1 in X i = 1, 2, . . . such that

(3.1) lim
n→∞

fix
(i)
n = lim

n→∞

gix
(i)
n = z, i = 1, 2, . . . for some z ∈ X.

For k = 1 and x
(1)
n = xn and f1 = f , g1 = g, we see that Definition 3.1

reduces to Definition 2.11 and if gi = fi for all i, (3.1) reduces to (2.15) with

℘ = {fi}
∞

i=1. Further for k = 2, x
(1)
n = xn, x

(2)
n = yn and f1 = f , f2 = r,

g1 = g, g2 = s in Definition 3.1, we get Definition 2.13.
Our main result is the following:

Theorem 3.1. For fixed positive integer k, let {fi}
∞

i=1 and {gi}
∞

i=1 be two

sequences of self-maps on X with fk+i = fi and gk+i = gi for all i sharing the

property (EA) and satisfying the following implicit conditions

ψ(d(fix, fi+1y), d(gix, gi+1y), d(fix, gix), d(fi+1y, gi+1y),

d(gix, fi+1y), d(fix, gi+1y)) ≤ 0 for all x, y ∈ X, i = 1, 2, 3, . . . .(3.2)

For each i, suppose that one of the following conditions holds good:

(c) gi is onto;
(d) gi(X) is closed;
(e) fi(X) is closed and fi(X) ⊂ gi(X).

If each (fi, gi) is weakly compatible, then each pair (fi, gi) has a coincidence

point, which will also be a coincidence point for the remaining pairs and hence

is a common coincidence point for all the maps {fi, gi : i = 1, 2, . . .}. In fact,

this common coincidence point will be their unique common fixed point.

Proof. In view of the condition that fk+i = fi and gk+i = gi for all i, we realize
that both the sequences {fi}

∞

i=1 and {gi}
∞

i=1 reduce to k-tuples (f1, f2, . . . , fk)
and (g1, g2, . . . , gk) respectively and (3.2) contains k inequalities only.

It is not hard to show that the limit z in (3.1) will be a common fixed point
for all fi and gi, i = 1, 2, . . . , k whenever it is their common coincidence point.

In fact, suppose that

(3.3) f1z = f2z = · · · = fkz = g1z = g2z = · · · = gkz.

Then with x = x
(i)
n and y = z, (3.2) gives

ψ(d(fix
(i)
n , fi+1z), d(gix

(i)
n , gi+1z), d(fix

(i)
n , gix

(i)
n ),

d(fi+1z, gi+1z), d(gix
(i)
n , fi+1z), d(fix

(i)
n , gi+1z)) ≤ 0.
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Applying the limit as n → ∞ in this and using (3.1), (3.3) and the lower
semicontinuity of ψ, we get

ψ(d(z, fiz), d(z, fiz), 0, 0, d(z, fiz), d(z, fiz)) ≤ 0,

which will be against the choice (Pb) if d(z, fiz) > 0. Therefore, d(z, fiz) = 0 or
fiz = z for all i and hence z is a common fixed point for fi and gi, i = 1, 2, . . . , k.

In view of the cyclical invariance of the conditions of the theorem, it is
enough to prove that the limit z is a coincidence point for (f1, g1) and hence
for the remaining pairs (fj , gj), j = 2, 3, . . . , k.

Let g1 be onto, we have

(3.4) z = g1p1 for some p1 ∈ X.

Writing x = p1 and y = x
(2)
n in the first inequality of (3.2), we get

ψ(d(f1p1, f2x
(2)
n ), d(g1p1, g2x

(2)
n ), d(f1p1, g1p1),

d(f2x
(2)
n , g2x

(2)
n ), d(g1p1, f2x

(2)
n ), d(f1p1, g2x

(2)
n )) ≤ 0.

Proceeding the limit as n→ ∞ and using (3.1), (3.4) and the lower semiconti-
nuity of ψ, this yields

ψ(d(f1p1, g1p1), 0, d(f1p1, g1p1), 0, 0, d(f1p1, g1p1)) ≤ 0,

which would contradict (Pa) if d(f1p1, g1p1) > 0.
Thus we must have f1p1 = g1p1 = z.
Since gi is onto, we get in a similar way as above that fipi = gipi = z for

i = 2, 3, . . . , k. Therefore, weak compatibility of all the pairs imply that

(3.5) figi(pi) = gifi(pi) or fiz = giz for i = 1, 2, 3, . . . , k.

Now writing x = y = z in the first inequality of (3.2), we have

ψ(d(f1z, f2z), d(g1z, g2z), d(f1z, g1z), d(f2z, g2z), d(g1z, f2z), d(f1z, g2z)) ≤ 0.

Using (3.5) in this, we get

ψ(d(f1z, f2z), d(f1z, f2z), 0, 0, d(f1z, f2z), d(f1z, f2z)) ≤ 0.

This would be against the choice (Pb) if d(f1z, f2z) > 0. Thus d(f1z, f2z) = 0
or f1z = f2z = g1z = g2z.

Writing x = y = z in the second, third, . . . inequalities of (3.2) and using
(3.5) and proceeding as above, it follows that

f2z = f3z = · · · = fkz = g2z = g3z = · · · = gkz.

In other words, z is a common coincidence point and hence a common fixed
point for all fi, gi, i = 1, 2, . . . , k, in view of the argument done at the beginning
of the proof.

Suppose that g1(X) is closed. Then in view of (3.1), we find that {g1x
(1)
n }∞n=1

is a Cauchy sequence and z ∈ g1(X) so that (3.4) holds good. The remaining
proof similarly follows from the previous case.
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Suppose that f1(X) is closed. Since f1(X) ⊂ g1(X), a common fixed point
for all fi, gi follows from the previous case.

Finally, to establish the uniqueness of the common fixed point z, let z′ also
be a common fixed point of fi, gi, i = 1, 2, . . . , k. Then from (3.2) we see that

ψ(d(fiz, fi+1z
′), d(giz, gi+1z

′), d(fiz, giz), d(fi+1z
′, gi+1z

′),

d(giz, fi+1z
′), d(fiz, gi+1z

′)) ≤ 0 for i = 1, 2, 3, . . . , k

or

ψ(d(z, z′), d(z, z′), 0, 0, d(z, z′), d(z, z′)) ≤ 0,

which would again will be against the choice (Pb) if z 6= z′. Hence we must
have z = z′. That is, the common fixed point z is unique. �

Corollary 3.1. For fixed positive integer k, let {fi}
∞

i=1 be a sequence of self-

maps on X with fk+i = fi satisfy the following inequalities

ψ(d(fix, fi+1y), d(x, y), d(fix, x), d(fi+1y, y), d(x, fi+1y), d(fix, y)) ≤ 0(3.6)

for i = 1, 2, 3, . . . , k

for all x, y ∈ X. Given x0 ∈ X, suppose that there are points xn in X with

fixk(n−1)+(i−1) = xk(n−1)+i for i = 1, 2, 3, . . . , k, n = 1, 2, . . . ,(3.7)

and

(3.8) lim
n→∞

xn = z for some z ∈ X.

Then f1, f2, . . . , fk will have a unique common fixed point.

Proof. Taking gi = IX for all i in Theorem 3.1, we see that each gi is onto. Since
IX is known to commute with each fi, each pair (fi, IX) is weakly compatible.
Define

(3.9) x(i)n = xk(n−1)+(i−1) for all n, i = 1, 2, 3, . . . , k.

Then (3.7) and (3.8) imply that (fi, IX) share the common property (EA).
Hence a unique common fixed point is ensured by Theorem 3.1. �

To show that Theorem 1.1 is a particular case of Corollary 3.1, consider ψ
as in Example 2.4, where p and q have the same choice as given in Theorem
1.1. Then the inequalities given in (1.2) are particular cases of the relations
(3.6).

Given x0 ∈ X , where X is a complete metric space. In the following few
lines, we establish that 〈xn〉

∞

n=1 defined in (3.7) is a Cauchy sequence in X .
For this we require

(3.10) d(xn, xn+1) ≤ qmax{d(xn−1, xn), d(xn, xn+1)}) for all n ≥ 2.

In fact, taking x = xk(n−1)+i and y = xk(n−1)+i+1 in ith inequality of (1.2),
we have

[1 + pd(xk(n−1)+i, xk(n−1)+i+1)]d(fixk(n−1)+i, fi+1xk(n−1)+i+1)
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≤ p[d(xk(n−1)+i, fixk(n−1)+i)d(xk(n−1)+i+1 , fi+1xk(n−1)+i+1)

+ d(xk(n−1)+i, fi+1xk(n−1)+i+1)d(y, fixk(n−1)+i)]

+ qmax

{

d(xk(n−1)+i, xk(n−1)+i+1), d(xk(n−1)+i, fixk(n−1)+i),

d(xk(n−1)+i+1, fi+1xk(n−1)+i+1),

1
2 [d(xk(n−1)+i, fi+1xk(n−1)+i+1) + d(xk(n−1)+i+1, fixk(n−1)+i)]

}

which on using (3.7) and then simplifying gives

d(xk(n−1)+i+1, xk(n−1)+i+2)

≤ qmax
{

d(xk(n−1)+i, xk(n−1)+i+1), d(xk(n−1)+i+1, fixk(n−1)+i+2),

1
2d(xk(n−1)+i, xk(n−1)+i+2)

}

.(3.11)

Now from the triangle inequality, we see that

d(xk(n−1)+i, xk(n−1)+i+2)

≤ qmax
{

d(xk(n−1)+i, xk(n−1)+i+1), d(xk(n−1)+i+1, fixk(n−1)+i+2)
}

so that

1
2 [d(xk(n−1)+i, xk(n−1)+i+2)]

≤ qmax
{

d(xk(n−1)+i, xk(n−1)+i+1), d(xk(n−1)+i+1, fixk(n−1)+i+2)
}

.

With this (3.11) becomes

d(xk(n−1)+i+1, xk(n−1)+i+2)

≤ qmax
{

d(xk(n−1)+i, xk(n−1)+i+1), d(xk(n−1)+i+1, fixk(n−1)+i+2)
}

.

Since this holds for all i = 1, 2, . . . , k, (3.10) follows for all n.
Now, if d(xm, xm+1) > d(xm−1, xm), then d(xm, xm+1) > 0 and (3.10) would

imply that
d(xn, xn+1) ≤ qd(xn, xn+1) < d(xn, xn+1),

a contradiction, since q < 1. Therefore

d(xn, xn+1) ≤ d(xn−1, xn) for all n

so that (3.10) reduces to

(3.12) d(xn, xn+1) ≤ qd(xn−1, xn) for all n ≥ 2.

Repeated application of (3.12) gives

d(xn, xn+1) ≤ qn−1d(x1, x2) for all n ≥ 2.

Therefore for m > n, we get

d(xm, xn)

≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+2, xn+1) + d(xn+1, xn)
︸ ︷︷ ︸

m−n terms
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≤ qm−1d(x1, x2) + qm−2d(x1, x2) + · · ·+ qnd(x1, x2) + qn−1d(x1, x2)

= qn−1d(x1, x2)[1 + q + · · ·+ qm−n−2 + qm−n−1].

Proceeding the limit as n → ∞, the above inequality yields d(xm, xn) → 0.
In other words, 〈xn〉

∞

n=1 is a Cauchy sequence in X . Since X is complete, it
converges to some point z in X .

Therefore the unique common fixed point follows from Corollary 3.1.
Now let k = 1, f1 = f , g1 = r and consider ψ as in Example 2.8 with

0 ≤ q < 1 in Theorem 3.1. Then we immediately have:

Corollary 3.2. Let f and r be self-maps on X satisfying the property (EA)
and the contraction condition

d(fx, fy) ≤ qmax
{

d(rx, ry), d(fx, rx), d(ry, fy), d(rx, fy), d(ry, fx)
}

(3.13)

for all x, y ∈ X.

Suppose that one of the following conditions holds good:

(f) r is onto;
(g) r(X) is closed;
(h) f(X) is closed and f(X) ⊂ r(X).

If (f, r) is weakly compatible, then f and r will have a unique common fixed

point.

Next we prove that Theorem 2.1 is a particular case of Corollary 3.2:
Suppose that the conditions of Theorem 2.1 hold good. We first observe

that inequality (3.13) is weaker than (2.9). It may be noted as earlier that
R-weak commutativity of (f, r) of either type implies their weak compatibility.
Let x0 ∈ X . In view of the inclusion f(X) ⊂ r(X), we can choose points x1,
x2, . . . , xn, . . . in X such that yn = fxn−1 = rxn for all n ≥ 1. By a routine
iterative procedure, it is easy to show that 〈yn〉

∞

n=1 is a Cauchy sequence in X .
Since X is complete, yn → p for some p ∈ X as n→ ∞, which in turn implies
that f and r satisfy the property (EA). Then the unique common fixed point
follows from Corollary 3.2. Thus Corollary 3.2 is a generalization of Theorem
2.1, where the compatibility and weak reciprocal continuity of the pair (f, r)
are chipped in the conditions (f-h).

The following example provides a pair of self-maps for which a common fixed
point can be determined by Corollary 3.2 but not by Theorem 2.1:

Example 3.1. Let X = [2,∞) with the usual metric d(x, y) = |x− y|. Then
X is complete. Define f, r : X → X by f2 = 2, fx = 6 for 2 < x ≤ 5,
fx = x+5

5 for x > 5 and r2 = 2, rx = 12 for 2 < x ≤ 5, rx = x+1
3 for x > 5.

Then r(X) = X , that is r is onto, and f and r commute at their coincidence
point x = 2. That is f and r are weakly compatible. Further the inequality
(3.13) holds good with q = 29

30 .

Write xn = 5 + 1
n
for all n = 1, 2, 3, . . . . Then lim

n→∞

fxn = lim
n→∞

rxn = 2 so

that f and r satisfy the property (EA). Therefore by Corollary 3.2, f and r



A GENERALIZED COMMON FIXED POINT THEOREM 1851

have a unique common fixed point. Indeed, 2 is the only common fixed point
for f and r.

However, (2.9) fails. For instance with a = 2
5 , b = 1

15 and c = 1
2 , we find

that d(f35, f2) = 6 > 10a + 4b + 0.c = ad(r35, r2) + bd(fx, rx) + cd(r2, f2).
Hence Theorem 2.1 cannot be employed to find the common fixed point, though
they are R-weakly commuting of type (Ag) or (Af ) and X is complete. In
other words, Corollary 3.2 is a proper generalization of Theorem 2.1. More
over, f and r are neither compatible nor weakly reciprocally continuous since
lim
n→∞

frxn = lim
n→∞

f
(

2 + 1
5n

)

= 6 6= f2 and lim
n→∞

rfxn = lim
n→∞

g
(

2 + 1
5n

)

=

12 6= g2. This reveals that compatibility and weak reciprocal continuity can be
dropped in Theorem 2.1 to obtain a common fixed point.

With k = 2, f1 = f , f2 = g and g1 = g2 = r, we have:

Corollary 3.3. Let f , g and r be self-maps on X satisfying one of the inequal-

ities

ψ
(

d(fx, gy)d(rx, ry), d(fx, rx), d(gy, ry), d(rx, gy), d(fx, ry)
)

≤ 0,(3.14)

ψ
(

d(gx, fy)d(rx, ry), d(gx, rx), d(fy, ry), d(rx, fy), d(gx, ry)
)

≤ 0,(3.15)

for all x, y ∈ X. Suppose that either (f, r) or (g, r) satisfies the property (EA)
and that one of the following conditions holds good:

(i) r(X) is closed;
(j) f(X) is closed and f(X) ⊂ r(X);
(k) g(X) is closed and g(X) ⊂ r(X).

If either (f, r) or (g, r) is weakly compatible, then f, g and r will have a unique

common fixed point.

It is not difficult to prove that the weak compatibility and the property (EA)
of either pair is sufficient in Corollary 3.3 to obtain a fixed point under either
of the inequalities (3.14) and (3.15).

Now using the implicit relation given in Example 2.5, we see that the in-
equality (3.14) reduces to (2.10). Since every complete subspace of X is closed
and R-weak commutativity of (f, r) of either type implies their weak compati-
bility, the common fixed point of f , g and r can be obtained by Corollary 3.3.
In other words, Theorem 2.2 is a particular case of Corollary 3.3.

Finally we assert that Corollary 3.3 is a significant generalization of Theorem
2.4. In fact, we use the implicit relation given in Example 2.7 so that (3.14)
reduces to (2.13). Given x0 ∈ X , suppose that (f, g) is ar at x0 with respect to
r. Then lim

n→∞

d(yn, yn+1) = 0 where yn is defined in (2.14). From the proof of

Theorem 2.4, we find that {yn}
∞

n=1 is a Cauchy sequence. Let r(X) be orbitally
complete at x0. Then it follows that lim

n→∞

yn = rp. Using (2.13) it is easily

shown that (f, r) and (g, r) satisfy the property (EA).
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Other two cases that f(X) and g(X) are orbitally complete can similarly
be handled. The unique common fixed point finally follows from Corollary 3.3.
Hence Theorem 2.4 is a particular case of Corollary 3.3.

Acknowledgements. The author wishes to express sincere thanks to the
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