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HYPERSTABILITY OF THE GENERAL LINEAR
FUNCTIONAL EQUATION

MAGDALENA PI1SZCZEK

ABSTRACT. We give some results on hyperstability for the general linear
equation. Namely, we show that a function satisfying the linear equation
approximately (in some sense) must be actually the solution of it.

1. Introduction

Let X, Y be normed spaces over fields F, K, respectively. A function f: X —
Y is linear provided it satisfies the functional equation

(1) flax +by) = Af(z) + Bf(y), =z,y€ X,

where a,b € F\ {0}, A,B € K. We see that fora = b = A =B =1
in (1) we get the Cauchy equation while the Jensen equation corresponds to
a=b=A=B= % The general linear equation has been studied by many
authors, in particular the results of the stability can be found in [5], [6], [8],
9], [10], [13], [14].

We present some hyperstability results for the equation (1). Namely, we
show that, for some natural particular forms of ¢, the functional equation (1)
is ¢-hyperstable in the class of functions f: X — Y, ie., each f: X — Y

satisfying the inequality

must be linear. In this way we expect to stimulate somewhat the further
research of the issue of hyperstability, which seems to be a very promising
subject to study within the theory of Hyers-Ulam stability.

The hyperstability results concerning the Cauchy equation can be found in
[2], the general linear in [12] with o(x,y) = ||z||” + ||y||?, where p < 0. The
Jensen equation was studied in [1] and there were received some hyperstability
results for p(z,y) = c||z||”||y||?, where ¢ >0, p,q € R, p+q ¢ {0,1}.
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The stability of the Cauchy equation involving a product of powers of norms
was introduced by J. M. Rassias in [15], [16] and it is sometimes called Ulam-
Gavruta-Rassias stability. For more information about Ulam-Gavruta-Rassias
stability we refer to [7], [11], [17], [18], [19].

One of the method of the proof is based on a fixed point result that can
be derived from [3] (Theorem 1). To present it we need the following three
hypothesis:

(H1) X is a nonempty set, Y is a Banach space, f1,...,fr: X — X and
Li,...,Li: X — Ry are given.
(H2) 7:YX — YX is an operator satisfying the inequality

k
[T€@) - Tu@)] < 3 Li@|je(fil@) - uhi@)], &ney™, vex.
(H3) A: R,* — R, is defined by
k
zm@yZE:h@ng@L SeRY, zeX

Now we are in a position to present the above mentioned fixed point theorem.

Theorem 1.1. Let hypotheses (H1)—(H3) be valid and functions e: X — Ry
and ¢ : X =Y fulfil the following two conditions

|Te(@) — ()| <e(z), =e€X,

e¥(x) == ZA"E(:C) <oo, z€X.
n=0

Then there exists a unique fixed point v of T with
lo(@) — (@) < e%(x), zeX.

Moreover,

Y(x):= lim T"p(z), x€ X.

n—oo
The next theorem shows that a linear function on X \ {0} is linear on the
whole X.

Theorem 1.2. Let X,Y be normed spaces over F, K, respectively, a,b € F\{0},
A, B € K. If a function f: X —Y satisfies

(2) flaz +by) = Af(x) + Bf(y), =,y € X\{0},
then there exist an additive function g: X — 'Y satisfying conditions
(3) g(bx) = Bg(z) and g(az) = Ag(z), z€X

and a vector f € Y with
(4) B=(A+B)s
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such that

(5) flz)=g(@)+p, zeX

Conversely, if a function f: X — Y has the form (5) with some B € Y, an
additive g: X — Y such that (3) and (4) hold, then it satisfies the equation
(1) (for all z,y € X).

Proof. Assume that f fulfils (2). Replacing z by bx and y by —ax in (2) we
get

(6) f(0) = Af(bx) + Bf(—az), =< X\{0}.
Next with x replaced by bz and y by az in (2) we have
(7) f(2abz) = Af(bx) + Bf(ax), z€ X\ {0}.

Let f = fo+fo, where f¢, f, denote the even and the odd part of f, respectively.
It is obvious that fe, f, satisfy (2), (6) and (7).
First we show that f, is additive. According to (6) and (7) for the odd part
of f we have
Afo(bx) = Bf,(ax), xz€X

and

fo(2abx) = Afo(bx) + Bfolaz), =z € X.
Thus
(®) folw) = 2Bf,(57) =24fs(5-), wexX.

By (8) and (2)
(9) fo(x)‘i’fo(y):QAfo(;a) +2Bfo(%) :2f0(a£+b£)
r+y

2a 2b
:2f0( 5 ), z,y € X\ {0}

Fix z € X \ {0} and write X, := {pz: p > 0}. Then X, is a convex set, there
exist an additive map ¢,: X, — Y and a constant 5, € Y such that

fo(z):gz(z)+ﬂz; e X,.

We observe that

gz(pz) + ﬂz = fo(pz) = fo(

_ 9:(3p2) — 9:(p2)
2
which means that 8, = 0. Hence

3 (3) - oo -

3pz — pZ) ~ Jo(Bpz) — fo(pz)
2 o 2

=g:(pz), p>0,

Therefore with (9) we obtain

fo(w ;r y) _ fol@) ;r foly)

z,y € X
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and as f,(0) =0, f, is additive. Using additivity of f, and (8) we obtain
fo(bx) = QBfo(g) =Bf,(z), z€X

and .
folaw) =24f,(5) = Alol@), weX,
which means that (3) holds with g = f,.
Using (6) and (7) for the even part of f we obtain
fe(O) = fe(QGbSC), reX \ {0},
which means that f, is a constant function and (4) holds with 8 := fe(x).
For the proof of the converse, assume that a function f: X — Y has the
form (5) with some 8 € Y, an additive g: X — Y such that (3) and (4) hold.
Then for all z,y € X
flaz +by) = glaz +by) + B = gax) + g(by) + B
= Ag(x) + By(y) + (A+ B)S
= Af(z) + Bf(y),
which finishes the proof. (I

2. Hyperstability results

Theorem 2.1. Let X, Y be normed spaces over F, K, respectively, a,b €
F\{0}, A, BeK\{0},¢>0,p,¢geR, p+qg<0and f: X =Y satisfies

(10) 1f(ax +by) — Af(x) = Bf ()]l < cll=[lyll?, 2,y € X\ {0}

Then f is linear.

Proof. First we notice that without loss of generality we can assume that Y is
a Banach space, because otherwise we can replace it by its completion.

Since p + ¢ < 0, one of p, ¢ must be negative. Assume that ¢ < 0. We
observe that there exists mg € N such that

1 B
(11) ‘Z‘|a+bm|p+q+ Z’mp+q<1 for m > my.

Fix m > myg and replace y by mz in (10). Thus
|/ (a2 +bma) = Af(z) = Bf ma)]| < clla||mall”, € X\ {0}
and
(12) H— (a+ bm)z) — —f mz) H < mq|\x||z)+q, ze X\ {0}.
Write
TE(x) = ~€((a+ bm)z) — Sé(ma)
E:C.—A«Ea m)x A«me,
e(x) = ﬁmqnxnw, z € X\ {0},
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then (12) takes the form
ITf(z) = fo) <e(x), zeX\{0}.

Define

An(z —‘A‘n ((a+bm)x +‘—‘nmx z e X\ {0}.
Then it is easily seen that A has the form described in (H3) with k& = 2 and
fi(x) = (a4 dm)z, fo(x) = mz, L1(z) = ‘A‘ Ly(z) = |8 for z € X \ {0}.

Moreover, for every & u € Y XM 2 € X'\ {0}
1T€(x) — Tu()|
1 B 1 B
= || €@+ bm)w) = =€ma) — Zu(a+ bm)w) + < p(ma)

g\%M@—uxw+wmmm+¢§wg—uxmmn

ZL NE = w(fi@),

so (H2) is Vahd.
By (11) we have

= A"e(x)
n=0

= ¢ 1 B n
_ _ — p+q — |pyPt+aq p+q
;|A|mq(’A’|‘l+bm' + |l e

mA||z||P+
= K] . ze X\ {0}

— |4]la + bm|pta — |§|mp+q

Hence, according to Theorem 1.1 there exists a unique solution F': X \ {0} —
Y of the equation

F(z) = %F((a +bm)zx) — gF(mx), x e X\ {0}

such that
If(z) — ()] rarr el € X\ {0}
z)— F(x , )
11— |4lla + bm|pte — | B |mpta
Moreover,

F(x) = lim (T"f)(z), € X\{0}.

n—oo

We show that

(13) T f(ax +by) — AT" () ~ BT [
% fla bl | 2 ) P ylle, wy € X\ (0)

(i
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for every n € Ny. If n = 0, then (13) is simply (10). So, take r € Ny and
suppose that (13) holds for n = r. Then

|77+ f(az + by) — AT™ f(z) — BT f(y)|

H%TTJC((“ +bm)(az +by)) — gTTf(m(ax +by))
~ AT f((a+ bm)a) + AT f(ma)

- B%TTf((a +bm)y) + B%TTf(my)H

! (
+ (| la+ bl | Zmee) | 2 lmatp gl

:c(

Thus, by induction we have shown that (13) holds for every n € Ny.
Letting n — oo in (13), we obtain that

F(ax +by) = AF(z) + BF(y), z,y € X \{0}.

In this way, with Theorem 1.2, for every m > mg there exists a function F
satisfying the linear equation (1) such that

IN

1 B
< [la -+ ompre | 2 ) |2+ el Pl + bm)y)e

1 ptaq B pt+aq T P q
S[la+bmps 4+ | ) eyl 2y e X0\ {o).

ymiz]|P+e

, x € X\{0}.
Ta + b — [ B s Oy

I£2) - F@ll < —
It follows, with m — oo, that f is linear. O

In similar way we can prove the following theorem.

Theorem 2.2. Let X, Y be normed spaces over F, K, respectively, a,b €
F\ {0}, A, Be K\{0},¢c>0,p,g R, p+qg>0and f: X = Y satisfies
(10). If ¢ > 0 and |a|P*9 # |Al, or p > 0 and |b|PT9 # |B|, then f is linear.

Proof. We present the proof only when g > 0 because the second case is similar.

Let ¢ > 0 and |a||1:|+q < 1. Replacing y by —¢%=x, where m € N, in (10) we get
a a a |9
_ 4 _ _ _ e < p|| - &
|#((e=2)2) = ar@ - Bs(=goe)| < el - g2l = e x 02
thus
1 a B a
(14) |27 ((a = 2)e) = 2 ( ) - 1)

C a |4
< Tailam] lele, e X\ {0,
For x € X \ {0} we define
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e (@) [tz

|A|‘b

o) i= | 7lo( (e~ 5)o) + 5 (- 7o)

and as in Theorem 2.1 we observe that (14) takes the form

[T f(2) = f(@)]| < em(x), =€ X\{0}
and A,, has the form described in (H3) with & = 2 and fi(z) = (a — &)z,

m

fo(x) = 3%, Li(z) = ‘A‘ Ly(z) = |Z| for z € X \ {0}. Moreover, for every
& peYXMO z e X\ {0}

I1Tné(@) = Tnss@ < 3_ @€ = ) (F:@Dl

o (H2) is valid.
Next we can find mg € N, such that
|a|p+q 1

A m

p+q

bpta,s 1 \prta
’ZHE (E) <1 formENmO.

Therefore

T) = Z AZEm(w)

p+qz (|a|P q 1 pt+q b p+q( 1 )p-i-q)n
|A] ‘ m ’AH@ m
77 5o |q|\$||”+q cN € X\ {0)
= m mos T .
1 BB Lppra B Lt Lyt °

Hence, according to Theorem 1.1, for each m € N,,, there exists a unique
solution Fy,,: X \ {0} — Y of the equation

Fo(z) = %Fm((af %)z) - gFm(* %x), x € X\ {0}

such that

||f($) - Fm(‘r)H S |a|p+q

AT

g 7]

ze X \{0}L
|1_%|p+q |B||b|p+q( )p-i—q \ {0}

Moreover,

Fn(az +by) = AFy(z) + BE,(y), =,y € X\ {0}.
In this way we obtain a sequence (Fy,)men,,, of linear functions such that
ril 5 )P

1£(2) = Fn (@)l £ — e v e X\ {0},

S |1 — Lpta — |B||b|p+q( )p-i—q
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So, with m — oo, f is linear on X \ {0} and by Theorem 1.2 f is linear.

1

Let ¢ > 0 and m‘l% < 1. Replacing = by (% — ——)x and y by ﬁx, where

m €N, in (10) we get

J#(aG= 2o+ o)~ 4r (- ) ) - 21 (o

pi 1 q

§c(£f£):c el | xz € X\ {0}.
Whence
Jrer ~a(G~ G)) =24 )|
_C#L L1711 xz € X\ {0}.
For x € X \ {0} we define
oy a6((£ - o) ().
Em(x) = c#% - % : % ! |||t

An(e) = A1 (7 = =) + |Bln(),

and as in Theorem 2.1 we observe that (14) takes form

[T f(2) = f(@)[| < em(x), =€ X\{0}
and A,, has the form described in (H3) with & = 2 and fi(z) = (£ —

o)
f2(@) = s=x, Li(z) = |A|, Ly(z) = |B| for z € X \ {0}. Moreover, for every
&uneY XMz e X\ {0}

2

[Tk (@) — Z )€ — w)(fi(2))]],

o (H2) is valid.
Next we can find mg € N, such that
|A] ‘ 1 ‘erq |B| ‘ 1 ‘erq
apta o+ m

<1 form e Np,.

Therefore

x) = Z Al e ()
n=0

B > |A] 1 |p+a p+g
_Em(x)z;(|a|p+Q‘1_E‘ + |b|P+q‘_‘ )
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S 0L 'b‘ d eN € X\ {0}
= 1 5 , m mos L .
1 - [ ||p|+q 1- %|p+q - \b‘|p+|q |%|p+q

Hence, according to Theorem 1.1, for each m € N,,, there exists a unique
solution Fy,,: X \ {0} — Y of the equation

Fm(x):AFm((%—ﬁ)x) +BFm(%x), ze X\ {0}
such that
(15) (@) = Fu(o)] < —Trnrl el e X\ {0}
T - e - e — g L e '
Moreover,

Fo.(ax +by) = AF,,(z) + BFE,(y), =,y € X.
In this way we obtain a sequence (Fy,)men,,, of linear functions such that (15)
holds. It follows, with m — oo, that f is linear. (I

Theorem 2.3. Let X, Y be normed spaces over F, K, respectively, a,b €
F\ {0}, A,BeK\{0},¢>0,p,¢>0, and f: X =Y satisfies

(16) If(az + by) — Af(z) = Bf )|l < cllz[llyl?, 2,y € X.

If |a|PTe # |A| or |b|PTe # |B|, then f is linear.

Proof. Of course this theorem follows from Theorem 2.2 but as p, ¢ are positive
we can set 0 in (16) and get an auxiliary equalities. In this way we obtain

another proof which we present in the first case.
Assume that |a[PT? < |A|. Setting z =y =0 in (16) we get

(17) f(0)1—A-B)=0.
With y = 0 in (16) we have

flaz) = Af(z) +b0f(0), zeX
thus

fla) = Af(g) + Bf(0), z€X.
Using the last equality, (16) and (17) we get

x
_ d < Pyl
|ar(F=2) = 447 (2) - Bas(2)|| < cllallyl?, @y € x.
Replacing x by az, y by ay and dividing the last inequality by |A| we obtain
a
IF(az +by) — Af(x) - Biw)| < e

A
By induction it is easy to get

_ ISR
|f(az +by) = Af() = BIWI < (5 3) TelPlyl, oy € X.

Whence, with n — oo, f(ax + by) = Af(x) + Bf(y) for z,y € X.

axr + by

Syl ey e X.
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In the case |A| < |a|PT9, we use the equation f(z) = 4 f(az)—2 £(0) together
with (16) and (17). O

The following examples show that the assumption in the above theorems are
essential.

Example 2.4. Let f: R — R be defined as f(x) = 2. Then f satisfies

but f does not satisfy the Cauchy equation.

Example 2.5. More generally a quadratic function f(z) = 22, z € R satisfies
Flaz + by) — Af(z) — Bf ()| < 2labllallyl, o,y €R,

where A = a?, B =02, but f does not satisfy the linear equation (1).

Example 2.6. A function f(z) = |z|, = € R satisfies

’f(z;y) B f(@;f(y)

but f does not satisfy the Jensen equation.

<|z|?|y|?, =,ye€R,

It is known that for p = ¢ = 0 we have the stability result and a function
f(z) =z + ¢, x € R satisfies

lf(x+y) = fl@) = fy) <ec, x,yeR

but it is not linear.
To the end we show simple application of the above theorems.

Corollary 2.7. Let X, Y be normed spaces over F, K, respectively, a,b €
F\ {0}, A, B€K\{0},c>0,p,qeR, H: X? - Y, H(w,z) # 0 for some
z,w € X and

(18) [H (2, y)|| < cll=l”llyll?, =,y € X\ {0},

where ¢ > 0, p,q € R. If one of the following conditions

(1) p+4q<0,
(2) ¢ >0 and |a|PT? # |A,
(3) p>0 and [bP*7 # | B|

holds, then the functional equation
(19) h(ax + by) = Ah(z) + Bh(y) + H(z,y), =z,ye X
has no solutions in the class of functions h: X =Y.

Proof. Suppose that h: X — Y is a solution to (19). Then (10) holds, and
consequently, according to the above theorems, h is linear, which means that
H(w, z) = 0. This is a contradiction. O
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Example 2.8. The functions f: R — R defined as f(z) = 22 and H: R* - R
given by H(z,y) = 2zy satisfy the equation

flx+y)=f(z)+ fly) + H(x,y), z,yeR

and do not fulfill any condition (1)—(3) of Corollary 2.7.

Remark 2.9. We notice that our results correspond with the new results from
hyperstability, for example in [4] was proved that linear equation is ¢-hyper-
stabile with ¢(z,y) = c||z||”||y||?, but there was considered only the case when
¢, p,q € [0,4+00) (see Theorem 20).
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