HYPERSTABILITY OF THE GENERAL LINEAR FUNCTIONAL EQUATION

Magdalena Piszczek

Abstract

We give some results on hyperstability for the general linear equation. Namely, we show that a function satisfying the linear equation approximately (in some sense) must be actually the solution of it.

1. Introduction

Let X, Y be normed spaces over fields \mathbb{F}, \mathbb{K}, respectively. A function $f: X \rightarrow$ Y is linear provided it satisfies the functional equation

$$
\begin{equation*}
f(a x+b y)=A f(x)+B f(y), \quad x, y \in X \tag{1}
\end{equation*}
$$

where $a, b \in \mathbb{F} \backslash\{0\}, A, B \in \mathbb{K}$. We see that for $a=b=A=B=1$ in (1) we get the Cauchy equation while the Jensen equation corresponds to $a=b=A=B=\frac{1}{2}$. The general linear equation has been studied by many authors, in particular the results of the stability can be found in [5], [6], [8], [9], [10], [13], [14].

We present some hyperstability results for the equation (1). Namely, we show that, for some natural particular forms of φ, the functional equation (1) is φ-hyperstable in the class of functions $f: X \rightarrow Y$, i.e., each $f: X \rightarrow Y$ satisfying the inequality

$$
\|f(a x+b y)-A f(x)-B f(y)\| \leq \varphi(x, y), \quad x, y \in X
$$

must be linear. In this way we expect to stimulate somewhat the further research of the issue of hyperstability, which seems to be a very promising subject to study within the theory of Hyers-Ulam stability.

The hyperstability results concerning the Cauchy equation can be found in [2], the general linear in [12] with $\varphi(x, y)=\|x\|^{p}+\|y\|^{p}$, where $p<0$. The Jensen equation was studied in [1] and there were received some hyperstability results for $\varphi(x, y)=c\|x\|^{p}\|y\|^{q}$, where $c \geq 0, p, q \in \mathbb{R}, p+q \notin\{0,1\}$.

[^0]The stability of the Cauchy equation involving a product of powers of norms was introduced by J. M. Rassias in [15], [16] and it is sometimes called Ulam-Gǎvruţa-Rassias stability. For more information about Ulam-Gǎvruţa-Rassias stability we refer to [7], [11], [17], [18], [19].

One of the method of the proof is based on a fixed point result that can be derived from [3] (Theorem 1). To present it we need the following three hypothesis:
(H1) X is a nonempty set, Y is a Banach space, $f_{1}, \ldots, f_{k}: X \rightarrow X$ and $L_{1}, \ldots, L_{k}: X \rightarrow \mathbb{R}_{+}$are given.
(H2) $\mathcal{T}: Y^{X} \rightarrow Y^{X}$ is an operator satisfying the inequality

$$
\|\mathcal{T} \xi(x)-\mathcal{T} \mu(x)\| \leq \sum_{i=1}^{k} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|, \quad \xi, \mu \in Y^{X}, x \in X
$$

(H3) $\Lambda: \mathbb{R}_{+}{ }^{X} \rightarrow \mathbb{R}_{+}{ }^{X}$ is defined by

$$
\Lambda \delta(x):=\sum_{i=1}^{k} L_{i}(x) \delta\left(f_{i}(x)\right), \quad \delta \in \mathbb{R}_{+}{ }^{X}, x \in X
$$

Now we are in a position to present the above mentioned fixed point theorem.
Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions $\varepsilon: X \rightarrow \mathbb{R}_{+}$ and $\varphi: X \rightarrow Y$ fulfil the following two conditions

$$
\begin{gathered}
\|\mathcal{T} \varphi(x)-\varphi(x)\| \leq \varepsilon(x), \quad x \in X \\
\varepsilon^{*}(x):=\sum_{n=0}^{\infty} \Lambda^{n} \varepsilon(x)<\infty, \quad x \in X
\end{gathered}
$$

Then there exists a unique fixed point ψ of \mathcal{T} with

$$
\|\varphi(x)-\psi(x)\| \leq \varepsilon^{*}(x), \quad x \in X
$$

Moreover,

$$
\psi(x):=\lim _{n \rightarrow \infty} \mathcal{T}^{n} \varphi(x), \quad x \in X
$$

The next theorem shows that a linear function on $X \backslash\{0\}$ is linear on the whole X.

Theorem 1.2. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in \mathbb{F} \backslash\{0\}$, $A, B \in \mathbb{K}$. If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
f(a x+b y)=A f(x)+B f(y), \quad x, y \in X \backslash\{0\} \tag{2}
\end{equation*}
$$

then there exist an additive function $g: X \rightarrow Y$ satisfying conditions

$$
\begin{equation*}
g(b x)=B g(x) \text { and } g(a x)=A g(x), \quad x \in X \tag{3}
\end{equation*}
$$

and a vector $\beta \in Y$ with

$$
\begin{equation*}
\beta=(A+B) \beta \tag{4}
\end{equation*}
$$

such that

$$
\begin{equation*}
f(x)=g(x)+\beta, \quad x \in X . \tag{5}
\end{equation*}
$$

Conversely, if a function $f: X \rightarrow Y$ has the form (5) with some $\beta \in Y$, an additive $g: X \rightarrow Y$ such that (3) and (4) hold, then it satisfies the equation (1) (for all $x, y \in X)$.

Proof. Assume that f fulfils (2). Replacing x by $b x$ and y by $-a x$ in (2) we get

$$
\begin{equation*}
f(0)=A f(b x)+B f(-a x), \quad x \in X \backslash\{0\} . \tag{6}
\end{equation*}
$$

Next with x replaced by $b x$ and y by $a x$ in (2) we have

$$
\begin{equation*}
f(2 a b x)=A f(b x)+B f(a x), \quad x \in X \backslash\{0\} . \tag{7}
\end{equation*}
$$

Let $f=f_{e}+f_{o}$, where f_{e}, f_{o} denote the even and the odd part of f, respectively. It is obvious that f_{e}, f_{o} satisfy (2), (6) and (7).

First we show that f_{o} is additive. According to (6) and (7) for the odd part of f we have

$$
A f_{o}(b x)=B f_{o}(a x), \quad x \in X
$$

and

$$
f_{o}(2 a b x)=A f_{o}(b x)+B f_{o}(a x), \quad x \in X .
$$

Thus

$$
\begin{equation*}
f_{o}(x)=2 B f_{o}\left(\frac{x}{2 b}\right)=2 A f_{o}\left(\frac{x}{2 a}\right), \quad x \in X . \tag{8}
\end{equation*}
$$

By (8) and (2)

$$
\begin{align*}
f_{o}(x)+f_{o}(y) & =2 A f_{o}\left(\frac{x}{2 a}\right)+2 B f_{o}\left(\frac{y}{2 b}\right)=2 f_{o}\left(a \frac{x}{2 a}+b \frac{y}{2 b}\right) \tag{9}\\
& =2 f_{o}\left(\frac{x+y}{2}\right), \quad x, y \in X \backslash\{0\} .
\end{align*}
$$

Fix $z \in X \backslash\{0\}$ and write $X_{z}:=\{p z: p>0\}$. Then X_{z} is a convex set, there exist an additive map $g_{z}: X_{z} \rightarrow Y$ and a constant $\beta_{z} \in Y$ such that

$$
f_{o}(x)=g_{z}(x)+\beta_{z}, \quad x \in X_{z} .
$$

We observe that

$$
\begin{aligned}
g_{z}(p z)+\beta_{z} & =f_{o}(p z)=f_{o}\left(\frac{3 p z-p z}{2}\right)=\frac{f_{o}(3 p z)-f_{o}(p z)}{2} \\
& =\frac{g_{z}(3 p z)-g_{z}(p z)}{2}=g_{z}(p z), \quad p>0,
\end{aligned}
$$

which means that $\beta_{z}=0$. Hence

$$
f_{o}\left(\frac{1}{2} z\right)=g_{z}\left(\frac{1}{2} z\right)=\frac{1}{2} g_{z}(z)=\frac{1}{2} f_{o}(z) .
$$

Therefore with (9) we obtain

$$
f_{o}\left(\frac{x+y}{2}\right)=\frac{f_{o}(x)+f_{o}(y)}{2}, \quad x, y \in X
$$

and as $f_{o}(0)=0, f_{o}$ is additive. Using additivity of f_{o} and (8) we obtain

$$
f_{o}(b x)=2 B f_{o}\left(\frac{x}{2}\right)=B f_{o}(x), \quad x \in X
$$

and

$$
f_{o}(a x)=2 A f_{o}\left(\frac{x}{2}\right)=A f_{o}(x), \quad x \in X
$$

which means that (3) holds with $g=f_{o}$.
Using (6) and (7) for the even part of f we obtain

$$
f_{e}(0)=f_{e}(2 a b x), \quad x \in X \backslash\{0\}
$$

which means that f_{e} is a constant function and (4) holds with $\beta:=f_{e}(x)$.
For the proof of the converse, assume that a function $f: X \rightarrow Y$ has the form (5) with some $\beta \in Y$, an additive $g: X \rightarrow Y$ such that (3) and (4) hold. Then for all $x, y \in X$

$$
\begin{aligned}
f(a x+b y) & =g(a x+b y)+\beta=g(a x)+g(b y)+\beta \\
& =A g(x)+B g(y)+(A+B) \beta \\
& =A f(x)+B f(y)
\end{aligned}
$$

which finishes the proof.

2. Hyperstability results

Theorem 2.1. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in$ $\mathbb{F} \backslash\{0\}, A, B \in \mathbb{K} \backslash\{0\}, c \geq 0, p, q \in \mathbb{R}, p+q<0$ and $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(a x+b y)-A f(x)-B f(y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X \backslash\{0\} . \tag{10}
\end{equation*}
$$

Then f is linear.
Proof. First we notice that without loss of generality we can assume that Y is a Banach space, because otherwise we can replace it by its completion.

Since $p+q<0$, one of p, q must be negative. Assume that $q<0$. We observe that there exists $m_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}<1 \quad \text { for } m \geq m_{0} \tag{11}
\end{equation*}
$$

Fix $m \geq m_{0}$ and replace y by $m x$ in (10). Thus

$$
\|f(a x+b m x)-A f(x)-B f(m x)\| \leq c\|x\|^{p}\|m x\|^{q}, \quad x \in X \backslash\{0\}
$$

and
(12) $\quad\left\|\frac{1}{A} f((a+b m) x)-\frac{B}{A} f(m x)-f(x)\right\| \leq \frac{c}{|A|} m^{q}\|x\|^{p+q}, \quad x \in X \backslash\{0\}$.

Write

$$
\begin{aligned}
\mathcal{T} \xi(x) & :=\frac{1}{A} \xi((a+b m) x)-\frac{B}{A} \xi(m x), \\
\varepsilon(x) & :=\frac{c}{|A|} m^{q}\|x\|^{p+q}, \quad x \in X \backslash\{0\}
\end{aligned}
$$

then (12) takes the form

$$
\|\mathcal{T} f(x)-f(x)\| \leq \varepsilon(x), \quad x \in X \backslash\{0\} .
$$

Define

$$
\Lambda \eta(x):=\left|\frac{1}{A}\right| \eta((a+b m) x)+\left|\frac{B}{A}\right| \eta(m x), \quad x \in X \backslash\{0\} .
$$

Then it is easily seen that Λ has the form described in (H3) with $k=2$ and $f_{1}(x)=(a+b m) x, f_{2}(x)=m x, L_{1}(x)=\frac{1}{|A|}, L_{2}(x)=\left|\frac{B}{A}\right|$ for $x \in X \backslash\{0\}$.

Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}, x \in X \backslash\{0\}$

$$
\begin{aligned}
& \|\mathcal{T} \xi(x)-\mathcal{T} \mu(x)\| \\
= & \left.\| \frac{1}{A} \xi((a+b m) x)-\frac{B}{A} \xi(m x)-\frac{1}{A} \mu((a+b m) x)+\frac{B}{A} \mu(m x)\right) \| \\
\leq & \left|\frac{1}{A}\right|\|(\xi-\mu)((a+b m) x)\|+\left|\frac{B}{A}\right|\|(\xi-\mu)(m x)\| \\
= & \sum_{i=1}^{2} L_{i}(x)\left\|(\xi-\mu)\left(f_{i}(x)\right)\right\|,
\end{aligned}
$$

so (H2) is valid.
By (11) we have

$$
\begin{aligned}
\varepsilon^{*}(x) & :=\sum_{n=0}^{\infty} \Lambda^{n} \varepsilon(x) \\
& =\sum_{n=0}^{\infty} \frac{c}{|A|} m^{q}\left(\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}\right)^{n}\|x\|^{p+q} \\
& =\frac{\frac{c}{|A|} m^{q}\|x\|^{p+q}}{1-\left|\frac{1}{A}\right||a+b m|^{p+q}-\left|\frac{B}{A}\right| m^{p+q}}, \quad x \in X \backslash\{0\} .
\end{aligned}
$$

Hence, according to Theorem 1.1 there exists a unique solution $F: X \backslash\{0\} \rightarrow$ Y of the equation

$$
F(x)=\frac{1}{A} F((a+b m) x)-\frac{B}{A} F(m x), \quad x \in X \backslash\{0\}
$$

such that

$$
\|f(x)-F(x)\| \leq \frac{\frac{c}{|A|} m^{q}\|x\|^{p+q}}{1-\left|\frac{1}{A}\right||a+b m|^{p+q}-\left|\frac{B}{A}\right| m^{p+q}}, \quad x \in X \backslash\{0\} .
$$

Moreover,

$$
F(x):=\lim _{n \rightarrow \infty}\left(\mathcal{T}^{n} f\right)(x), \quad x \in X \backslash\{0\}
$$

We show that

$$
\begin{align*}
& \left\|\mathcal{T}^{n} f(a x+b y)-A \mathcal{T}^{n} f(x)-B \mathcal{T}^{n} f(y)\right\| \tag{13}\\
\leq & c\left(\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}\right)^{n}\|x\|^{p}\|y\|^{q}, \quad x, y \in X \backslash\{0\}
\end{align*}
$$

for every $n \in \mathbb{N}_{0}$. If $n=0$, then (13) is simply (10). So, take $r \in \mathbb{N}_{0}$ and suppose that (13) holds for $n=r$. Then

$$
\begin{aligned}
& \left\|\mathcal{T}^{r+1} f(a x+b y)-A \mathcal{T}^{r+1} f(x)-B \mathcal{T}^{r+1} f(y)\right\| \\
= & \| \frac{1}{A} \mathcal{T}^{r} f((a+b m)(a x+b y))-\frac{B}{A} \mathcal{T}^{r} f(m(a x+b y)) \\
& -A \frac{1}{A} \mathcal{T}^{r} f((a+b m) x)+A \frac{B}{A} \mathcal{T}^{r} f(m x) \\
& -B \frac{1}{A} \mathcal{T}^{r} f((a+b m) y)+B \frac{B}{A} \mathcal{T}^{r} f(m y) \| \\
\leq & c\left(\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}\right)^{r}\left|\frac{1}{A}\right|\|(a+b m) x\|^{p}\|(a+b m) y\|^{q} \\
& +c\left(\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}\right)^{r}\left|\frac{B}{A}\right|\|m x\|^{p}\|m y\|^{q} \\
= & c\left(\left|\frac{1}{A}\right||a+b m|^{p+q}+\left|\frac{B}{A}\right| m^{p+q}\right)^{r+1}\|x\|^{p}\|y\|^{q}, \quad x, y \in X \backslash\{0\} .
\end{aligned}
$$

Thus, by induction we have shown that (13) holds for every $n \in \mathbb{N}_{0}$.
Letting $n \rightarrow \infty$ in (13), we obtain that

$$
F(a x+b y)=A F(x)+B F(y), \quad x, y \in X \backslash\{0\} .
$$

In this way, with Theorem 1.2 , for every $m \geq m_{0}$ there exists a function F satisfying the linear equation (1) such that

$$
\|f(x)-F(x)\| \leq \frac{\frac{c}{|A|} m^{q}\|x\|^{p+q}}{1-\left|\frac{1}{A}\right||a+b m|^{p+q}-\left|\frac{B}{A}\right| m^{p+q}}, \quad x \in X \backslash\{0\} .
$$

It follows, with $m \rightarrow \infty$, that f is linear.
In similar way we can prove the following theorem.
Theorem 2.2. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in$ $\mathbb{F} \backslash\{0\}, A, B \in \mathbb{K} \backslash\{0\}, c \geq 0, p, q \in \mathbb{R}, p+q>0$ and $f: X \rightarrow Y$ satisfies (10). If $q>0$ and $|a|^{p+q} \neq|A|$, or $p>0$ and $|b|^{p+q} \neq|B|$, then f is linear.

Proof. We present the proof only when $q>0$ because the second case is similar. Let $q>0$ and $\frac{|a|^{p+q}}{|A|}<1$. Replacing y by $-\frac{a}{b m} x$, where $m \in \mathbb{N}$, in (10) we get
$\left\|f\left(\left(a-\frac{a}{m}\right) x\right)-A f(x)-B f\left(-\frac{a}{b m} x\right)\right\| \leq c\|x\|^{p}\left\|-\frac{a}{b m} x\right\|^{q}, \quad x \in X \backslash\{0\}$,
thus

$$
\begin{align*}
& \left\|\frac{1}{A} f\left(\left(a-\frac{a}{m}\right) x\right)-\frac{B}{A} f\left(-\frac{a}{b m} x\right)-f(x)\right\| \tag{14}\\
\leq & \frac{c}{|A|}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q}, \quad x \in X \backslash\{0\} .
\end{align*}
$$

For $x \in X \backslash\{0\}$ we define

$$
\mathcal{T}_{m} \xi(x):=\frac{1}{A} \xi\left(\left(a-\frac{a}{m}\right) x\right)-\frac{B}{A} \xi\left(-\frac{a}{b m} x\right),
$$

$$
\begin{aligned}
\varepsilon_{m}(x) & :=\frac{c}{|A|}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q}, \\
\Lambda_{m} \eta(x) & :=\left|\frac{1}{A}\right| \eta\left(\left(a-\frac{a}{m}\right) x\right)+\left|\frac{B}{A}\right| \eta\left(-\frac{a}{b m} x\right),
\end{aligned}
$$

and as in Theorem 2.1 we observe that (14) takes the form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

and Λ_{m} has the form described in (H3) with $k=2$ and $f_{1}(x)=\left(a-\frac{a}{m}\right) x$, $f_{2}(x)=-\frac{a}{b m} x, L_{1}(x)=\frac{1}{|A|}, L_{2}(x)=\left|\frac{B}{A}\right|$ for $x \in X \backslash\{0\}$. Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}, x \in X \backslash\{0\}$

$$
\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\| \leq \sum_{i=1}^{2} L_{i}(x)\left\|(\xi-\mu)\left(f_{i}(x)\right)\right\|
$$

so (H2) is valid.
Next we can find $m_{0} \in \mathbb{N}$, such that

$$
\frac{|a|^{p+q}}{|A|}\left|1-\frac{1}{m}\right|^{p+q}+\left|\frac{B}{A}\right|\left|\frac{b}{a}\right|^{p+q}\left(\frac{1}{m}\right)^{p+q}<1 \quad \text { for } m \in \mathbb{N}_{m_{0}}
$$

Therefore

$$
\begin{aligned}
\varepsilon_{m}^{*}(x) & :=\sum_{n=0}^{\infty} \Lambda_{m}^{n} \varepsilon_{m}(x) \\
& =\frac{c}{|A|}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q} \sum_{n=0}^{\infty}\left(\frac{|a|^{p+q}}{|A|}\left|1-\frac{1}{m}\right|^{p+q}+\left|\frac{B}{A}\right|\left|\frac{b}{a}\right|^{p+q}\left(\frac{1}{m}\right)^{p+q}\right)^{n} \\
& =\frac{\frac{c}{\mid A}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q}}{1-\frac{|a|^{p+q}}{|A|}\left|1-\frac{1}{m}\right|^{p+q}-\left|\frac{B}{A}\right|\left|\frac{b}{a}\right|^{p+q}\left(\frac{1}{m}\right)^{p+q}}, \quad m \in \mathbb{N}_{m_{0}}, x \in X \backslash\{0\} .
\end{aligned}
$$

Hence, according to Theorem 1.1, for each $m \in \mathbb{N}_{m_{0}}$ there exists a unique solution $F_{m}: X \backslash\{0\} \rightarrow Y$ of the equation

$$
F_{m}(x)=\frac{1}{A} F_{m}\left(\left(a-\frac{a}{m}\right) x\right)-\frac{B}{A} F_{m}\left(-\frac{a}{b m} x\right), \quad x \in X \backslash\{0\}
$$

such that

$$
\left\|f(x)-F_{m}(x)\right\| \leq \frac{\frac{c}{A A}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q}}{1-\frac{|a|^{p+q}}{|A|}\left|1-\frac{1}{m}\right|^{p+q}-\left|\frac{B}{A}\right|\left|\frac{b}{a}\right|^{p+q}\left(\frac{1}{m}\right)^{p+q}}, \quad x \in X \backslash\{0\} .
$$

Moreover,

$$
F_{m}(a x+b y)=A F_{m}(x)+B F_{m}(y), \quad x, y \in X \backslash\{0\} .
$$

In this way we obtain a sequence $\left(F_{m}\right)_{m \in \mathbb{N}_{m_{0}}}$ of linear functions such that

$$
\left\|f(x)-F_{m}(x)\right\| \leq \frac{\frac{c}{|A|}\left|\frac{a}{b m}\right|^{q}\|x\|^{p+q}}{1-\frac{|a|^{p+q}}{|A|}\left|1-\frac{1}{m}\right|^{p+q}-\left|\frac{B}{A}\right|\left|\frac{b}{a}\right|^{p+q}\left(\frac{1}{m}\right)^{p+q}}, \quad x \in X \backslash\{0\}
$$

So, with $m \rightarrow \infty, f$ is linear on $X \backslash\{0\}$ and by Theorem $1.2 f$ is linear.
Let $q>0$ and $\frac{|A|}{|a|^{p+q}}<1$. Replacing x by $\left(\frac{1}{a}-\frac{1}{a m}\right) x$ and y by $\frac{1}{b m} x$, where $m \in \mathbb{N}$, in (10) we get

$$
\begin{aligned}
& \left\|f\left(a\left(\frac{1}{a}-\frac{1}{a m}\right) x+b \frac{1}{b m} x\right)-A f\left(\left(\frac{1}{a}-\frac{1}{a m}\right) x\right)-B f\left(\frac{1}{b m} x\right)\right\| \\
\leq & c\left\|\left(\frac{1}{a}-\frac{1}{a m}\right) x\right\|^{p}\left\|\frac{1}{b m} x\right\|^{q}, \quad x \in X \backslash\{0\} .
\end{aligned}
$$

Whence

$$
\begin{aligned}
& \left\|f(x)-A f\left(\left(\frac{1}{a}-\frac{1}{a m}\right) x\right)-B f\left(\frac{1}{b m} x\right)\right\| \\
\leq & c \frac{1}{|a|^{p}} \frac{1}{|b|^{q}}\left|1-\frac{1}{m}\right|^{p}\left|\frac{1}{m}\right|^{q}\|x\|^{p+q}, \quad x \in X \backslash\{0\} .
\end{aligned}
$$

For $x \in X \backslash\{0\}$ we define

$$
\begin{aligned}
\mathcal{T}_{m} \xi(x) & :=A \xi\left(\left(\frac{1}{a}-\frac{1}{a m}\right) x\right)+B \xi\left(\frac{1}{b m} x\right), \\
\varepsilon_{m}(x) & :=c \frac{1}{|a|^{p}} \frac{1}{|b|^{q}}\left|1-\frac{1}{m}\right|^{p}\left|\frac{1}{m}\right|^{q}\|x\|^{p+q} \\
\Lambda_{m} \eta(x) & :=|A| \eta\left(\left(\frac{1}{a}-\frac{1}{a m}\right) x\right)+|B| \eta\left(\frac{1}{b m} x\right),
\end{aligned}
$$

and as in Theorem 2.1 we observe that (14) takes form

$$
\left\|\mathcal{T}_{m} f(x)-f(x)\right\| \leq \varepsilon_{m}(x), \quad x \in X \backslash\{0\}
$$

and Λ_{m} has the form described in (H3) with $k=2$ and $f_{1}(x)=\left(\frac{1}{a}-\frac{1}{a m}\right) x$, $f_{2}(x)=\frac{1}{b m} x, L_{1}(x)=|A|, L_{2}(x)=|B|$ for $x \in X \backslash\{0\}$. Moreover, for every $\xi, \mu \in Y^{X \backslash\{0\}}, x \in X \backslash\{0\}$

$$
\left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x)\right\| \leq \sum_{i=1}^{2} L_{i}(x)\left\|(\xi-\mu)\left(f_{i}(x)\right)\right\|
$$

so (H2) is valid.
Next we can find $m_{0} \in \mathbb{N}$, such that

$$
\frac{|A|}{|a|^{p+q}}\left|1-\frac{1}{m}\right|^{p+q}+\frac{|B|}{|b|^{p+q}}\left|\frac{1}{m}\right|^{p+q}<1 \quad \text { for } m \in \mathbb{N}_{m_{0}} .
$$

Therefore

$$
\begin{aligned}
\varepsilon_{m}^{*}(x) & :=\sum_{n=0}^{\infty} \Lambda_{m}^{n} \varepsilon_{m}(x) \\
& =\varepsilon_{m}(x) \sum_{n=0}^{\infty}\left(\frac{|A|}{|a|^{p+q}}\left|1-\frac{1}{m}\right|^{p+q}+\frac{|B|}{|b|^{p+q}}\left|\frac{1}{m}\right|^{p+q}\right)^{n}
\end{aligned}
$$

$$
=\frac{c \frac{1}{|a|^{p}} \frac{1}{|b|^{q}}\left|1-\frac{1}{m}\right|^{p}\left|\frac{1}{m}\right|^{q} \|\left. x\right|^{p+q}}{1-\frac{|A|}{|a|^{p+q}}\left|1-\frac{1}{m}\right|^{p+q}-\frac{|B|}{|b|^{p+q}\left|\frac{1}{m}\right|^{p+q}}, \quad m \in \mathbb{N}_{m_{0}}, x \in X \backslash\{0\} ~ . ~ . ~}
$$

Hence, according to Theorem 1.1, for each $m \in \mathbb{N}_{m_{0}}$ there exists a unique solution $F_{m}: X \backslash\{0\} \rightarrow Y$ of the equation

$$
F_{m}(x)=A F_{m}\left(\left(\frac{1}{a}-\frac{1}{a m}\right) x\right)+B F_{m}\left(\frac{1}{b m} x\right), \quad x \in X \backslash\{0\}
$$

such that

$$
\begin{equation*}
\left\|f(x)-F_{m}(x)\right\| \leq \frac{c \frac{1}{|a|^{p}} \frac{1}{|b|^{q}}\left|1-\frac{1}{m}\right|^{p}\left|\frac{1}{m}\right|^{q} \|\left. x\right|^{p+q}}{1-\frac{|A|}{|a|^{p+q}}\left|1-\frac{1}{m}\right|^{p+q}-\frac{|B|}{|b|^{p+q}}\left|\frac{1}{m}\right|^{p+q}}, \quad x \in X \backslash\{0\} . \tag{15}
\end{equation*}
$$

Moreover,

$$
F_{m}(a x+b y)=A F_{m}(x)+B F_{m}(y), \quad x, y \in X
$$

In this way we obtain a sequence $\left(F_{m}\right)_{m \in \mathbb{N}_{m_{0}}}$ of linear functions such that (15) holds. It follows, with $m \rightarrow \infty$, that f is linear.

Theorem 2.3. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in$ $\mathbb{F} \backslash\{0\}, A, B \in \mathbb{K} \backslash\{0\}, c \geq 0, p, q>0$, and $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(a x+b y)-A f(x)-B f(y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X \tag{16}
\end{equation*}
$$

If $|a|^{p+q} \neq|A|$ or $|b|^{p+q} \neq|B|$, then f is linear.
Proof. Of course this theorem follows from Theorem 2.2 but as p, q are positive we can set 0 in (16) and get an auxiliary equalities. In this way we obtain another proof which we present in the first case.

Assume that $|a|^{p+q}<|A|$. Setting $x=y=0$ in (16) we get

$$
\begin{equation*}
f(0)(1-A-B)=0 . \tag{17}
\end{equation*}
$$

With $y=0$ in (16) we have

$$
f(a x)=A f(x)+b f(0), \quad x \in X
$$

thus

$$
f(x)=A f\left(\frac{x}{a}\right)+B f(0), \quad x \in X .
$$

Using the last equality, (16) and (17) we get

$$
\left\|A f\left(\frac{a x+b y}{a}\right)-A A f\left(\frac{x}{a}\right)-B A f\left(\frac{y}{a}\right)\right\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X .
$$

Replacing x by $a x, y$ by ay and dividing the last inequality by $|A|$ we obtain

$$
\|f(a x+b y)-A f(x)-B f(y)\| \leq c \frac{|a|^{p+q}}{|A|}\|x\|^{p}\|y\|^{q}, \quad x, y \in X
$$

By induction it is easy to get

$$
\|f(a x+b y)-A f(x)-B f(y)\| \leq c\left(\frac{|a|^{p+q}}{|A|}\right)^{n}\|x\|^{p}\|y\|^{q}, \quad x, y \in X
$$

Whence, with $n \rightarrow \infty, f(a x+b y)=A f(x)+B f(y)$ for $x, y \in X$.

In the case $|A|<|a|^{p+q}$, we use the equation $f(x)=\frac{1}{A} f(a x)-\frac{b}{a} f(0)$ together with (16) and (17).

The following examples show that the assumption in the above theorems are essential.
Example 2.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2}$. Then f satisfies

$$
|f(x+y)-f(x)-f(y)| \leq 2|x||y|, \quad x, y \in \mathbb{R}
$$

but f does not satisfy the Cauchy equation.
Example 2.5. More generally a quadratic function $f(x)=x^{2}, x \in \mathbb{R}$ satisfies

$$
|f(a x+b y)-A f(x)-B f(y)| \leq 2|a b||x||y|, \quad x, y \in \mathbb{R}
$$

where $A=a^{2}, B=b^{2}$, but f does not satisfy the linear equation (1).
Example 2.6. A function $f(x)=|x|, x \in \mathbb{R}$ satisfies

$$
\left|f\left(\frac{x+y}{2}\right)-\frac{f(x)+f(y)}{2}\right| \leq|x|^{\frac{1}{2}}|y|^{\frac{1}{2}}, \quad x, y \in \mathbb{R}
$$

but f does not satisfy the Jensen equation.
It is known that for $p=q=0$ we have the stability result and a function $f(x)=x+c, x \in \mathbb{R}$ satisfies

$$
|f(x+y)-f(x)-f(y)| \leq c, \quad x, y \in \mathbb{R}
$$

but it is not linear.
To the end we show simple application of the above theorems.
Corollary 2.7. Let X, Y be normed spaces over \mathbb{F}, \mathbb{K}, respectively, $a, b \in$ $\mathbb{F} \backslash\{0\}, A, B \in \mathbb{K} \backslash\{0\}, c \geq 0, p, q \in \mathbb{R}, H: X^{2} \rightarrow Y, H(w, z) \neq 0$ for some $z, w \in X$ and

$$
\begin{equation*}
\|H(x, y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X \backslash\{0\} \tag{18}
\end{equation*}
$$

where $c \geq 0, p, q \in \mathbb{R}$. If one of the following conditions
(1) $p+q<0$,
(2) $q>0$ and $|a|^{p+q} \neq|A|$,
(3) $p>0$ and $|b|^{p+q} \neq|B|$
holds, then the functional equation

$$
\begin{equation*}
h(a x+b y)=A h(x)+B h(y)+H(x, y), \quad x, y \in X \tag{19}
\end{equation*}
$$

has no solutions in the class of functions $h: X \rightarrow Y$.
Proof. Suppose that $h: X \rightarrow Y$ is a solution to (19). Then (10) holds, and consequently, according to the above theorems, h is linear, which means that $H(w, z)=0$. This is a contradiction.

Example 2.8. The functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)=x^{2}$ and $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $H(x, y)=2 x y$ satisfy the equation

$$
f(x+y)=f(x)+f(y)+H(x, y), \quad x, y \in \mathbb{R}
$$

and do not fulfill any condition (1)-(3) of Corollary 2.7.
Remark 2.9. We notice that our results correspond with the new results from hyperstability, for example in [4] was proved that linear equation is φ-hyperstabile with $\varphi(x, y)=c\|x\|^{p}\|y\|^{q}$, but there was considered only the case when $c, p, q \in[0,+\infty)$ (see Theorem 20).

References

[1] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), no. 2, 353-365.
[2] J. Brzdȩk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 41, (2013), no. 1-2, 58-67.
[3] J. Brzdȩk, J. Chudziak, and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), no. 17, 6728-6732.
[4] J. Brzdȩk and K. Ciepliński, Hyperstability and Superstability, Abstr. Appl. Anal. 2013 (2013), Art. ID 401756, 13 pp.
[5] J. Brzdȩk and A. Pietrzyk, A note on stability of the general linear equation, Aequationes Math. 75 (2008), no. 3, 267-270.
[6] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[7] ___ An answer to a question of John M. Rassias concerning the stability of Cauchy equation, Advances in Equations and Inequalities, Hadronic Math. Ser. 1999.
[8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston-Basel-Berlin, 1998.
[9] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[10] M. Kuczma, An introduction to the Theory of Functional Equation and Inequalities, PWN, Warszawa-Kraków-Katowice, 1985.
[11] P. Nakmahachalasint, Hyers-Ulam-Rassias stability and Ulam-Găvruţa-Rassias stabilities of additive functional equation in several variables, Int. J. Math. Sci. 2007 (2007), Art. ID 13437, 6pp.
[12] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes Math. 88 (2014), no. 1-2, 163-168.
[13] D. Popa, Hyers-Ulam-Rassias stability of the general linear equation, Nonlinear Funct. Anal. Appl. 7 (2002), no. 4, 581-588.
[14] , On the stability of the general linear equation, Results Math. 53 (2009), no. 3-4, 383-389.
[15] J. M. Rassias, On approximation of approximately linear mappings, J. Funct. Anal. 46 (1982), no. 1, 126-130.
[16] , Solution of a problem of Ulam, J. Approx. Theory 57 (1989), no. 3, 268-273.
[17] K. Ravi and M. Arunkumar, On the Ulam-Găvruţa-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Int. J. Appl. Math. Stat. 7 (2007), 143-156.
[18] K. Ravi and B. V. Senthil Kumar, Ulam-Găvruţa-Rassias stability of Rassias Reciprocal functional equation, Glob. J. App. Math. Sci. 3 (2010), 57-79.
[19] M. Ait Sibaha, B. Bouikhalene, and E. Elqorachi, Ulam-Găvruţa-Rassias stability of a linear functional equation, Int. J. Appl. Math. Stat. 7 (2007), 157-166.

Institute of Mathematics
Pedagogical University
Podchorasżych 2
PL-30-084 Kraków, Poland
E-mail address: magdap@up.krakow.pl

[^0]: Received March 29, 2014; Revised March 24, 2015.
 2010 Mathematics Subject Classification. 39B82, 39B62, 47H14, 47H10, 47J20.
 Key words and phrases. linear equation, hyperstability.

