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HYPERSTABILITY OF THE GENERAL LINEAR

FUNCTIONAL EQUATION

Magdalena Piszczek

Abstract. We give some results on hyperstability for the general linear
equation. Namely, we show that a function satisfying the linear equation
approximately (in some sense) must be actually the solution of it.

1. Introduction

LetX , Y be normed spaces over fields F, K, respectively. A function f : X →
Y is linear provided it satisfies the functional equation

(1) f(ax+ by) = Af(x) +Bf(y), x, y ∈ X,

where a, b ∈ F \ {0}, A,B ∈ K. We see that for a = b = A = B = 1
in (1) we get the Cauchy equation while the Jensen equation corresponds to
a = b = A = B = 1

2
. The general linear equation has been studied by many

authors, in particular the results of the stability can be found in [5], [6], [8],
[9], [10], [13], [14].

We present some hyperstability results for the equation (1). Namely, we
show that, for some natural particular forms of ϕ, the functional equation (1)
is ϕ-hyperstable in the class of functions f : X → Y , i.e., each f : X → Y

satisfying the inequality

‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ ϕ(x, y), x, y ∈ X,

must be linear. In this way we expect to stimulate somewhat the further
research of the issue of hyperstability, which seems to be a very promising
subject to study within the theory of Hyers-Ulam stability.

The hyperstability results concerning the Cauchy equation can be found in
[2], the general linear in [12] with ϕ(x, y) = ‖x‖p + ‖y‖p, where p < 0. The
Jensen equation was studied in [1] and there were received some hyperstability
results for ϕ(x, y) = c‖x‖p‖y‖q, where c ≥ 0, p, q ∈ R, p+ q /∈ {0, 1}.
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The stability of the Cauchy equation involving a product of powers of norms
was introduced by J. M. Rassias in [15], [16] and it is sometimes called Ulam-
Gǎvruţa-Rassias stability. For more information about Ulam-Gǎvruţa-Rassias
stability we refer to [7], [11], [17], [18], [19].

One of the method of the proof is based on a fixed point result that can
be derived from [3] (Theorem 1). To present it we need the following three
hypothesis:

(H1) X is a nonempty set, Y is a Banach space, f1, . . . , fk : X → X and
L1, . . . , Lk : X → R+ are given.

(H2) T : Y X → Y X is an operator satisfying the inequality

∥

∥T ξ(x)− T µ(x)
∥

∥ ≤

k
∑

i=1

Li(x)
∥

∥ξ(fi(x)) − µ(fi(x))
∥

∥, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ: R+
X → R+

X is defined by

Λδ(x) :=

k
∑

i=1

Li(x)δ(fi(x)), δ ∈ R+
X , x ∈ X.

Now we are in a position to present the above mentioned fixed point theorem.

Theorem 1.1. Let hypotheses (H1)–(H3) be valid and functions ε : X → R+

and ϕ : X → Y fulfil the following two conditions
∥

∥T ϕ(x) − ϕ(x)
∥

∥ ≤ ε(x), x ∈ X,

ε∗(x) :=

∞
∑

n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ X.

Moreover,

ψ(x) := lim
n→∞

T nϕ(x), x ∈ X.

The next theorem shows that a linear function on X \ {0} is linear on the
whole X .

Theorem 1.2. Let X,Y be normed spaces over F, K, respectively, a, b ∈ F\{0},
A,B ∈ K. If a function f : X → Y satisfies

(2) f(ax+ by) = Af(x) +Bf(y), x, y ∈ X \ {0},

then there exist an additive function g : X → Y satisfying conditions

(3) g(bx) = Bg(x) and g(ax) = Ag(x), x ∈ X

and a vector β ∈ Y with

(4) β = (A+B)β
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such that

(5) f(x) = g(x) + β, x ∈ X.

Conversely, if a function f : X → Y has the form (5) with some β ∈ Y , an

additive g : X → Y such that (3) and (4) hold, then it satisfies the equation

(1) (for all x, y ∈ X).

Proof. Assume that f fulfils (2). Replacing x by bx and y by −ax in (2) we
get

(6) f(0) = Af(bx) +Bf(−ax), x ∈ X \ {0}.

Next with x replaced by bx and y by ax in (2) we have

(7) f(2abx) = Af(bx) +Bf(ax), x ∈ X \ {0}.

Let f = fe+fo, where fe, fo denote the even and the odd part of f , respectively.
It is obvious that fe, fo satisfy (2), (6) and (7).

First we show that fo is additive. According to (6) and (7) for the odd part
of f we have

Afo(bx) = Bfo(ax), x ∈ X

and
fo(2abx) = Afo(bx) +Bfo(ax), x ∈ X.

Thus

(8) fo(x) = 2Bfo

( x

2b

)

= 2Afo

( x

2a

)

, x ∈ X.

By (8) and (2)

fo(x) + fo(y) = 2Afo

( x

2a

)

+ 2Bfo

( y

2b

)

= 2fo

(

a
x

2a
+ b

y

2b

)

(9)

= 2fo

(x+ y

2

)

, x, y ∈ X \ {0}.

Fix z ∈ X \ {0} and write Xz := {pz : p > 0}. Then Xz is a convex set, there
exist an additive map gz : Xz → Y and a constant βz ∈ Y such that

fo(x) = gz(x) + βz, x ∈ Xz.

We observe that

gz(pz) + βz = fo(pz) = fo

(3pz − pz

2

)

=
fo(3pz)− fo(pz)

2

=
gz(3pz)− gz(pz)

2
= gz(pz), p > 0,

which means that βz = 0. Hence

fo

(1

2
z
)

= gz

(1

2
z
)

=
1

2
gz(z) =

1

2
fo(z).

Therefore with (9) we obtain

fo

(x+ y

2

)

=
fo(x) + fo(y)

2
, x, y ∈ X
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and as fo(0) = 0, fo is additive. Using additivity of fo and (8) we obtain

fo(bx) = 2Bfo

(x

2

)

= Bfo(x), x ∈ X

and

fo(ax) = 2Afo

(x

2

)

= Afo(x), x ∈ X,

which means that (3) holds with g = fo.

Using (6) and (7) for the even part of f we obtain

fe(0) = fe(2abx), x ∈ X \ {0},

which means that fe is a constant function and (4) holds with β := fe(x).
For the proof of the converse, assume that a function f : X → Y has the

form (5) with some β ∈ Y , an additive g : X → Y such that (3) and (4) hold.
Then for all x, y ∈ X

f(ax+ by) = g(ax+ by) + β = g(ax) + g(by) + β

= Ag(x) +Bg(y) + (A+B)β

= Af(x) +Bf(y),

which finishes the proof. �

2. Hyperstability results

Theorem 2.1. Let X, Y be normed spaces over F, K, respectively, a, b ∈
F \ {0}, A,B ∈ K \ {0}, c ≥ 0, p, q ∈ R, p+ q < 0 and f : X → Y satisfies

(10) ‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ X \ {0}.

Then f is linear.

Proof. First we notice that without loss of generality we can assume that Y is
a Banach space, because otherwise we can replace it by its completion.

Since p + q < 0, one of p, q must be negative. Assume that q < 0. We
observe that there exists m0 ∈ N such that

(11)
∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q < 1 for m ≥ m0.

Fix m ≥ m0 and replace y by mx in (10). Thus

‖f(ax+ bmx)−Af(x)−Bf(mx)‖ ≤ c‖x‖p‖mx‖q, x ∈ X \ {0}

and

(12)
∥

∥

∥

1

A
f((a+ bm)x)−

B

A
f(mx)− f(x)

∥

∥

∥
≤

c

|A|
mq‖x‖p+q, x ∈ X \ {0}.

Write

T ξ(x) :=
1

A
ξ((a+ bm)x)−

B

A
ξ(mx),

ε(x) :=
c

|A|
mq‖x‖p+q, x ∈ X \ {0},
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then (12) takes the form

‖T f(x)− f(x)‖ ≤ ε(x), x ∈ X \ {0}.

Define

Λη(x) :=
∣

∣

∣

1

A

∣

∣

∣
η((a+ bm)x) +

∣

∣

∣

B

A

∣

∣

∣
η(mx), x ∈ X \ {0}.

Then it is easily seen that Λ has the form described in (H3) with k = 2 and
f1(x) = (a+ bm)x, f2(x) = mx, L1(x) =

1
|A|

, L2(x) = |B
A
| for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0}, x ∈ X \ {0}

‖T ξ(x) − T µ(x)‖

=
∥

∥

∥

1

A
ξ((a+ bm)x)−

B

A
ξ(mx)−

1

A
µ((a+ bm)x) +

B

A
µ(mx))

∥

∥

∥

≤
∣

∣

∣

1

A

∣

∣

∣
‖(ξ − µ)((a+ bm)x)‖ +

∣

∣

∣

B

A

∣

∣

∣
‖(ξ − µ)(mx)‖

=

2
∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖,

so (H2) is valid.
By (11) we have

ε∗(x) :=

∞
∑

n=0

Λnε(x)

=

∞
∑

n=0

c

|A|
mq

(
∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q

)n

‖x‖p+q

=

c
|A|
mq‖x‖p+q

1− | 1
A
||a+ bm|p+q − |B

A
|mp+q

, x ∈ X \ {0}.

Hence, according to Theorem 1.1 there exists a unique solution F : X \ {0} →
Y of the equation

F (x) =
1

A
F ((a+ bm)x)−

B

A
F (mx), x ∈ X \ {0}

such that

‖f(x)− F (x)‖ ≤

c
|A|
mq‖x‖p+q

1− | 1
A
||a+ bm|p+q − |B

A
|mp+q

, x ∈ X \ {0}.

Moreover,

F (x) := lim
n→∞

(T nf)(x), x ∈ X \ {0}.

We show that

‖T nf(ax+ by)−AT nf(x)−BT nf(y)‖(13)

≤ c
(
∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q

)n

‖x‖p‖y‖q, x, y ∈ X \ {0}
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for every n ∈ N0. If n = 0, then (13) is simply (10). So, take r ∈ N0 and
suppose that (13) holds for n = r. Then

‖T r+1f(ax+ by)−AT r+1f(x)−BT r+1f(y)‖

=
∥

∥

∥

1

A
T rf((a+ bm)(ax+ by))−

B

A
T rf(m(ax+ by))

−A
1

A
T rf((a+ bm)x) +A

B

A
T rf(mx)

−B
1

A
T rf((a+ bm)y) +B

B

A
T rf(my)

∥

∥

∥

≤ c
(∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q

)r∣
∣

∣

1

A

∣

∣

∣
‖(a+ bm)x‖p‖(a+ bm)y‖q

+ c
(∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q

)r∣
∣

∣

B

A

∣

∣

∣
‖mx‖p‖my‖q

= c
(∣

∣

∣

1

A

∣

∣

∣
|a+ bm|p+q +

∣

∣

∣

B

A

∣

∣

∣
mp+q

)r+1

‖x‖p‖y‖q, x, y ∈ X \ {0}.

Thus, by induction we have shown that (13) holds for every n ∈ N0.
Letting n→ ∞ in (13), we obtain that

F (ax+ by) = AF (x) +BF (y), x, y ∈ X \ {0}.

In this way, with Theorem 1.2, for every m ≥ m0 there exists a function F

satisfying the linear equation (1) such that

‖f(x)− F (x)‖ ≤

c
|A|
mq‖x‖p+q

1− | 1
A
||a+ bm|p+q − |B

A
|mp+q

, x ∈ X \ {0}.

It follows, with m→ ∞, that f is linear. �

In similar way we can prove the following theorem.

Theorem 2.2. Let X, Y be normed spaces over F, K, respectively, a, b ∈
F \ {0}, A,B ∈ K \ {0}, c ≥ 0, p, q ∈ R, p + q > 0 and f : X → Y satisfies

(10). If q > 0 and |a|p+q 6= |A|, or p > 0 and |b|p+q 6= |B|, then f is linear.

Proof. We present the proof only when q > 0 because the second case is similar.

Let q > 0 and |a|p+q

|A|
< 1. Replacing y by − a

bm
x, where m ∈ N, in (10) we get

∥

∥

∥
f
((

a−
a

m

)

x
)

−Af(x)−Bf
(

−
a

bm
x
)∥

∥

∥
≤ c‖x‖p

∥

∥

∥
−

a

bm
x
∥

∥

∥

q

, x ∈ X \ {0},

thus
∥

∥

∥

1

A
f
((

a−
a

m

)

x
)

−
B

A
f
(

−
a

bm
x
)

− f(x)
∥

∥

∥
(14)

≤
c

|A|

∣

∣

∣

a

bm

∣

∣

∣

q

‖x‖p+q, x ∈ X \ {0}.

For x ∈ X \ {0} we define

Tmξ(x) :=
1

A
ξ
((

a−
a

m

)

x
)

−
B

A
ξ
(

−
a

bm
x
)

,
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εm(x) :=
c

|A|

∣

∣

∣

a

bm

∣

∣

∣

q

‖x‖p+q,

Λmη(x) :=
∣

∣

∣

1

A

∣

∣

∣
η
((

a−
a

m

)

x
)

+
∣

∣

∣

B

A

∣

∣

∣
η
(

−
a

bm
x
)

,

and as in Theorem 2.1 we observe that (14) takes the form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}

and Λm has the form described in (H3) with k = 2 and f1(x) = (a − a
m
)x,

f2(x) = − a
bm
x, L1(x) =

1
|A|

, L2(x) = |B
A
| for x ∈ X \ {0}. Moreover, for every

ξ, µ ∈ Y X\{0}, x ∈ X \ {0}

‖Tmξ(x)− Tmµ(x)‖ ≤
2

∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖,

so (H2) is valid.
Next we can find m0 ∈ N, such that

|a|p+q

|A|

∣

∣

∣
1−

1

m

∣

∣

∣

p+q

+
∣

∣

∣

B

A

∣

∣

∣

∣

∣

∣

b

a

∣

∣

∣

p+q( 1

m

)p+q

< 1 for m ∈ Nm0
.

Therefore

ε∗m(x) :=

∞
∑

n=0

Λn
mεm(x)

=
c

|A|

∣

∣

∣

a

bm

∣

∣

∣

q

‖x‖p+q

∞
∑

n=0

( |a|p+q

|A|

∣

∣

∣
1−

1

m

∣

∣

∣

p+q

+
∣

∣

∣

B

A

∣

∣

∣

∣

∣

∣

b

a

∣

∣

∣

p+q( 1

m

)p+q)n

=

c
|A|

| a
bm

|q‖x‖p+q

1− |a|p+q

|A|
|1− 1

m
|p+q − |B

A
|| b
a
|p+q( 1

m
)p+q

, m ∈ Nm0
, x ∈ X \ {0}.

Hence, according to Theorem 1.1, for each m ∈ Nm0
there exists a unique

solution Fm : X \ {0} → Y of the equation

Fm(x) =
1

A
Fm

((

a−
a

m

)

x
)

−
B

A
Fm

(

−
a

bm
x
)

, x ∈ X \ {0}

such that

‖f(x)− Fm(x)‖ ≤

c
|A|

| a
bm

|q‖x‖p+q

1− |a|p+q

|A|
|1− 1

m
|p+q − |B

A
|| b
a
|p+q( 1

m
)p+q

, x ∈ X \ {0}.

Moreover,

Fm(ax+ by) = AFm(x) +BFm(y), x, y ∈ X \ {0}.

In this way we obtain a sequence (Fm)m∈Nm0
of linear functions such that

‖f(x)− Fm(x)‖ ≤

c
|A|

| a
bm

|q‖x‖p+q

1− |a|p+q

|A|
|1− 1

m
|p+q − |B

A
|| b
a
|p+q( 1

m
)p+q

, x ∈ X \ {0}.
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So, with m→ ∞, f is linear on X \ {0} and by Theorem 1.2 f is linear.

Let q > 0 and |A|

|a|p+q < 1. Replacing x by ( 1
a
− 1

am
)x and y by 1

bm
x, where

m ∈ N, in (10) we get
∥

∥

∥
f
(

a
(1

a
−

1

am

)

x+ b
1

bm
x
)

−Af
((1

a
−

1

am

)

x
)

−Bf
( 1

bm
x
)∥

∥

∥

≤ c
∥

∥

∥

(1

a
−

1

am

)

x
∥

∥

∥

p∥
∥

∥

1

bm
x
∥

∥

∥

q

, x ∈ X \ {0}.

Whence
∥

∥

∥
f(x)−Af

((1

a
−

1

am

)

x
)

−Bf
( 1

bm
x
)∥

∥

∥

≤ c
1

|a|p
1

|b|q

∣

∣

∣
1−

1

m

∣

∣

∣

p∣
∣

∣

1

m

∣

∣

∣

q

‖x‖p+q, x ∈ X \ {0}.

For x ∈ X \ {0} we define

Tmξ(x) := Aξ
((1

a
−

1

am

)

x
)

+Bξ
( 1

bm
x
)

,

εm(x) := c
1

|a|p
1

|b|q

∣

∣

∣
1−

1

m

∣

∣

∣

p∣
∣

∣

1

m

∣

∣

∣

q

‖x‖p+q,

Λmη(x) := |A|η
((1

a
−

1

am

)

x
)

+ |B|η
( 1

bm
x
)

,

and as in Theorem 2.1 we observe that (14) takes form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}

and Λm has the form described in (H3) with k = 2 and f1(x) = ( 1
a
− 1

am
)x,

f2(x) =
1
bm
x, L1(x) = |A|, L2(x) = |B| for x ∈ X \ {0}. Moreover, for every

ξ, µ ∈ Y X\{0}, x ∈ X \ {0}

‖Tmξ(x)− Tmµ(x)‖ ≤

2
∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖,

so (H2) is valid.
Next we can find m0 ∈ N, such that

|A|

|a|p+q

∣

∣

∣
1−

1

m

∣

∣

∣

p+q

+
|B|

|b|p+q

∣

∣

∣

1

m

∣

∣

∣

p+q

< 1 for m ∈ Nm0
.

Therefore

ε∗m(x) :=

∞
∑

n=0

Λn
mεm(x)

= εm(x)

∞
∑

n=0

( |A|

|a|p+q

∣

∣

∣
1−

1

m

∣

∣

∣

p+q

+
|B|

|b|p+q

∣

∣

∣

1

m

∣

∣

∣

p+q)n
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=
c 1
|a|p

1
|b|q

|1− 1
m
|p| 1

m
|q‖x‖p+q

1− |A|

|a|p+q |1−
1
m
|p+q − |B|

|b|p+q |
1
m
|p+q

, m ∈ Nm0
, x ∈ X \ {0}.

Hence, according to Theorem 1.1, for each m ∈ Nm0
there exists a unique

solution Fm : X \ {0} → Y of the equation

Fm(x) = AFm

((1

a
−

1

am

)

x
)

+BFm

( 1

bm
x
)

, x ∈ X \ {0}

such that

(15) ‖f(x)− Fm(x)‖ ≤
c 1
|a|p

1
|b|q

|1− 1
m
|p| 1

m
|q‖x‖p+q

1− |A|

|a|p+q |1−
1
m
|p+q − |B|

|b|p+q |
1
m
|p+q

, x ∈ X \ {0}.

Moreover,
Fm(ax+ by) = AFm(x) +BFm(y), x, y ∈ X.

In this way we obtain a sequence (Fm)m∈Nm0
of linear functions such that (15)

holds. It follows, with m→ ∞, that f is linear. �

Theorem 2.3. Let X, Y be normed spaces over F, K, respectively, a, b ∈
F \ {0}, A,B ∈ K \ {0}, c ≥ 0, p, q > 0, and f : X → Y satisfies

(16) ‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ X.

If |a|p+q 6= |A| or |b|p+q 6= |B|, then f is linear.

Proof. Of course this theorem follows from Theorem 2.2 but as p, q are positive
we can set 0 in (16) and get an auxiliary equalities. In this way we obtain
another proof which we present in the first case.

Assume that |a|p+q < |A|. Setting x = y = 0 in (16) we get

(17) f(0)(1−A−B) = 0.

With y = 0 in (16) we have

f(ax) = Af(x) + bf(0), x ∈ X

thus

f(x) = Af
(x

a

)

+Bf(0), x ∈ X.

Using the last equality, (16) and (17) we get
∥

∥

∥
Af

(ax+ by

a

)

−AAf
(x

a

)

−BAf
(y

a

)∥

∥

∥
≤ c‖x‖p‖y‖q, x, y ∈ X.

Replacing x by ax, y by ay and dividing the last inequality by |A| we obtain

‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ c
|a|p+q

|A|
‖x‖p‖y‖q, x, y ∈ X.

By induction it is easy to get

‖f(ax+ by)−Af(x)−Bf(y)‖ ≤ c
( |a|p+q

|A|

)n

‖x‖p‖y‖q, x, y ∈ X.

Whence, with n→ ∞, f(ax+ by) = Af(x) +Bf(y) for x, y ∈ X .
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In the case |A| < |a|p+q, we use the equation f(x) = 1
A
f(ax)− b

a
f(0) together

with (16) and (17). �

The following examples show that the assumption in the above theorems are
essential.

Example 2.4. Let f : R → R be defined as f(x) = x2. Then f satisfies

|f(x+ y)− f(x)− f(y)| ≤ 2|x||y|, x, y ∈ R,

but f does not satisfy the Cauchy equation.

Example 2.5. More generally a quadratic function f(x) = x2, x ∈ R satisfies

|f(ax+ by)−Af(x)−Bf(y)| ≤ 2|ab||x||y|, x, y ∈ R,

where A = a2, B = b2, but f does not satisfy the linear equation (1).

Example 2.6. A function f(x) = |x|, x ∈ R satisfies

∣

∣

∣
f
(x+ y

2

)

−
f(x) + f(y)

2

∣

∣

∣
≤ |x|

1
2 |y|

1
2 , x, y ∈ R,

but f does not satisfy the Jensen equation.

It is known that for p = q = 0 we have the stability result and a function
f(x) = x+ c, x ∈ R satisfies

|f(x+ y)− f(x)− f(y)| ≤ c, x, y ∈ R

but it is not linear.
To the end we show simple application of the above theorems.

Corollary 2.7. Let X, Y be normed spaces over F, K, respectively, a, b ∈
F \ {0}, A,B ∈ K \ {0}, c ≥ 0, p, q ∈ R, H : X2 → Y , H(w, z) 6= 0 for some

z, w ∈ X and

(18) ‖H(x, y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ X \ {0},

where c ≥ 0, p, q ∈ R. If one of the following conditions

(1) p+ q < 0,
(2) q > 0 and |a|p+q 6= |A|,
(3) p > 0 and |b|p+q 6= |B|

holds, then the functional equation

(19) h(ax+ by) = Ah(x) +Bh(y) +H(x, y), x, y ∈ X

has no solutions in the class of functions h : X → Y .

Proof. Suppose that h : X → Y is a solution to (19). Then (10) holds, and
consequently, according to the above theorems, h is linear, which means that
H(w, z) = 0. This is a contradiction. �
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Example 2.8. The functions f : R → R defined as f(x) = x2 and H : R2 → R

given by H(x, y) = 2xy satisfy the equation

f(x+ y) = f(x) + f(y) +H(x, y), x, y ∈ R

and do not fulfill any condition (1)–(3) of Corollary 2.7.

Remark 2.9. We notice that our results correspond with the new results from
hyperstability, for example in [4] was proved that linear equation is ϕ-hyper-
stabile with ϕ(x, y) = c‖x‖p‖y‖q, but there was considered only the case when
c, p, q ∈ [0,+∞) (see Theorem 20).
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[17] K. Ravi and M. Arunkumar, On the Ulam-Gǎvruţa-Rassias stability of the orthogonally

Euler-Lagrange type functional equation, Int. J. Appl. Math. Stat. 7 (2007), 143–156.
[18] K. Ravi and B. V. Senthil Kumar, Ulam-Gǎvruţa-Rassias stability of Rassias Reciprocal
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