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ON A MULTI-PARAMETRIC GENERALIZATION OF THE

UNIFORM ZERO-TWO LAW IN L
1-SPACES

Farrukh Mukhamedov

Abstract. Following an idea of Ornstein and Sucheston, Foguel proved
the so-called uniform “zero-two” law: let T : L1(X,F , µ) → L1(X,F , µ)
be a positive contraction. If for some m ∈ N∪{0} one has ‖Tm+1

−Tm
‖ <

2, then
lim

n→∞
‖Tn+1

− Tn
‖ = 0.

There are many papers devoted to generalizations of this law. In the
present paper we provide a multi-parametric generalization of the uniform
zero-two law for L1-contractions.

1. Introduction

Let (X,F , µ) be a measure space with a positive σ-additive measure µ. In
what follows, for the sake of shortness, we denote by L1 the usual L1(X,F , µ)
space associated with (X,F , µ). A linear operator T : L1 → L1 is called a
positive contraction if Tf ≥ 0 whenever f ≥ 0 and ‖T ‖ ≤ 1.

Jamison and Orey [7] proved that if P is a Markov operator recurrent in the
sense of Harris, with σ-finite invariant measure µ, then ‖Png‖1 → 0 for every
g ∈ L1 with

∫

g dµ = 0 if (and only if) the chain is aperiodic. Clearly, when
the chain is not aperiodic, taking f with positive and negative parts supported
in different sets of the cyclic decomposition, we have limn→∞ ‖Pnf‖1 = 2‖f‖1.

Ornstein and Sucheston [13] obtained an analytic proof of the Jamison-Orey
result, and in their work they proved the following theorem [13, Theorem 1.1].

Theorem 1.1. Let T : L1 → L1 be a positive contraction. Then either

(1.1) sup
‖f‖1≤1

lim
n→∞

‖T n+1f − T nf‖ = 2,

or ‖T n+1f − T nf‖ → 0 for every f ∈ L1.

This result was later called a strong zero-two law. Consequently, [13, The-
orem 1.3], if T is ergodic with T ∗1 = 1 (e.g. T is ergodic and conservative),
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then either (1.1) holds, or ‖T ng‖1 → 0 for every g ∈ L1 with
∫

g dµ = 0. Some
extensions of the strong zero-two law can be found in [2, 17, 21].

Interchanging “sup” and “lim” in the strong zero-two law we have the fol-
lowing uniform zero-two law, proved by Foguel [5] using ideas of [4] and [13].

Theorem 1.2. Let T : L1 → L1 be a positive contraction. If for some m ∈
N ∪ {0} one has ‖Tm+1 − Tm‖ < 2, then

lim
n→∞

‖T n+1 − T n‖ = 0.

A “zero-two” law for Markov processes was proved in [3], which allowed
to study random walks on locally compact groups. Other extensions and
generalizations of the formulated law have been investigated by many au-
thors [4, 6, 10, 18, 20]. In all these investigations, the generalization was
in direction replacement of the L1-space by an abstract Banach lattice (see
[8, 11, 15, 16, 18]). In [12] we have proposed another kind of generalization of
the uniform zero-two law in L1-spaces.

In this paper we continue the previous investigations and prove a multi-
parametric generalization of the uniform “zero-two” law in L1-space. Note
that a different kind of generalization of the said law is given in [8, 15, 19].

2. Preliminaries

In this section, we provide necessary facts which will be used in the next
section.

Let T, S : L1 → L1 be two positive contractions. We write T ≤ S if S − T

is a positive operator. In this case we have

(2.1) ‖Sx− Tx‖ = ‖Sx‖ − ‖Tx‖

for every x ≥ 0. Moreover, for a positive operator T : L1 → L1 from |Tf | ≤
T (|f |) we obtain

(2.2) ‖T ‖ = sup
‖x‖=1

‖Tx‖ = sup
‖x‖=1,x≥0

‖Tx‖.

In [12] we have proved the following:

Theorem 2.1 ([12]). Let T1, T2, S1, S2 : L1 → L1 be positive contractions such

that Ti ≤ Si, i = 1, 2 and S1S2 = S2S1. If there is an n0 ∈ N such that

‖S1S
n0

2 − T1T
n0

2 ‖ < 1, then ‖S1S
n
2 − T1T

n
2 ‖ < 1 for every n ≥ n0.

From this theorem we immediately get a simple generalization of a result of
[20, Theorem 1.1].

Corollary 2.2. Let Z, T, S : L1 → L1 be positive contractions such that T ≤ S

and ZS = SZ. If there is an n0 ∈ N such that ‖Z(Sn0 − T n0)‖ < 1, then

‖Z(Sn − T n)‖ < 1 for every n ≥ n0.

Putting Z = I we obtain the result of [20].
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Corollary 2.3 ([20]). Let T, S : L1 → L1 be positive contractions such that

T ≤ S. If there is an n0 ∈ N such that ‖S − T ‖ < 1, then ‖Sn − T n‖ < 1 for

every n ≥ 1.

Let us provide an example of Z, S, T positive contractions for which the
statement of Corollary 2.2 holds, but the condition of Corollary 2.3 is not
satisfied.

Example. Consider R2 with the norm ‖x‖ = |x1| + |x2|, where x = (x1, x2).
An order in R

2 is defined as usual, namely x ≥ 0 if and only if x1 ≥ 0, x2 ≥ 0.
Now define mappings T : R2 → R

2 and S : R2 → R
2, respectively, by

S(x1, x2) =

(

1

2
x1 +

1

3
x2,

1

2
x1 +

1

3
x2

)

,(2.3)

T (x1, x2) =

(

1

4
x2, 0

)

.(2.4)

It is clear that S and T are positive and T ≤ S. Let us define Z : R2 → R
2 by

Z(x1, x2) =

(

(1− c)x1 +
2c

3
x2, cx1 +

3− 4c

3
x2

)

,(2.5)

where c ∈ (0, 3/4].
Then one can see that Z is positive and ZS = SZ. Moreover, one has

‖Z‖ = sup
‖x‖=1

x≥0

‖Zx‖ = max
x1+x2=1

x1,x2≥0

{

(1− c)x1 +
2c

3
x2 + cx1 +

3− 4c

3
x2

}

= max
0≤x1≤1

{

2c

3
x1 +

3− 2c

3

}

= 1.

Similarly, we find that ‖S‖ = 1 and ‖T ‖ = 1/4.
From (2.3), (2.4) one gets

‖S − T ‖ = sup
‖x‖=1

x≥0

‖(S − T )x‖ = max
0≤x1≤1

{

7x1 + 5

12

}

= 1,(2.6)

‖S2 − T 2‖ = sup
‖x‖=1

x≥0

‖(S2 − T 2)x‖ = max
0≤x1≤1

{

5x1 + 10

18

}

=
15

18
.(2.7)

Similarly, from (2.5), (2.3), (2.4) we obtain

‖Z(S − T )‖ = sup
‖x‖=1

x≥0

‖Z(S − T )x‖ = 1−
c

3
< 1.(2.8)

Consequently, we have positive contractions T and S with S ≥ T such that
‖S − T ‖ = 1, ‖S2 − T 2‖ < 1. This shows that the condition of Corollary 2.3 is
not satisfied, but due to Corollary 2.2 we have ‖Z(Sn−T n)‖ < 1 for all n ≥ 1.
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First note that for any x, y ∈ L1 using the pointwise minimum one defines,

(2.9) x ∧ y =
1

2
(x+ y − |x− y|).

It is well-known (see [2, p. 11], [9, pp. 159–160]) that for any linear mapping S

of L1 one can define its modulus by

(2.10) |S|x = sup{Sy : |y| ≤ x}, x ∈ L1, x ≥ 0.

It is known that |S| is linear, ‖|S|‖ = ‖S‖, and |Sf | ≤ |S|(|f |) (see [9, pp. 159–
160]).

Hence, similarly to (2.9) for given two linear mappings S, T of L1 we define

(2.11) (S ∧ T )x =
1

2
(Sx+ Tx− |S − T |x), x ∈ L1.

It is immediate (using the linearity of the modulus) that S ∧ T is linear, and
easy to show that S, T ≥ S ∧ T . One needs to show that if R ≤ S and R ≤ T ,
then R ≤ S ∧ T (see [2, pp. 14–15]).

A linear operator Z : L1 → L1 is called a lattice homomorphism whenever

(2.12) Z(x ∨ y) = Zx ∨ Zy

holds for all x, y ∈ L1. One can see that such an operator is positive. Note
that such homomorphisms were studied in [14].

Recall that a net {xα} in L1 is order convergent to x, denoted xα →o x

whenever there exists another net {yα} with the same index set satisfying
|xα − x| ≤ yα ↓ 0. An operator T : L1 → L1 is said to be order continuous, if
xα →o 0 implies Txα →o 0.

Lemma 2.4 ([12]). Let S, T be positive contractions of L1, and Z be an order

continuous lattice homomorphism of L1. Then one has

Z|S − T | = |Z(S − T )|.(2.13)

Moreover, we have

Z(S ∧ T ) = ZS ∧ ZT.(2.14)

In what follows, an order continuous lattice homomorphism Z : L1 → L1

with ‖Z‖ ≤ 1, is called a lattice contraction.

3. A multi-parametric generalization of the zero-two law

In this section we prove a multi-parametric generalization of the uniform
zero-two law for positive contractions on L1.

Let us first introduce some notations. Denote N0 = N ∪ {0}. For any
m = (m1, . . . ,md),n = (n1, . . . , nd) ∈ N

d
0 (d ≥ 1) we define in the usual way,

m+ n = (m1 + n1, . . . ,md + nd), ℓn = (ℓn1, . . . , ℓnd), where ℓ ∈ N0. We write
n ≤ k if and only if ni ≤ ki (i = 1, 2, . . . , d). We denote |n| := n1 + · · ·+ nd.

Let us formulate our main result.
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Theorem 3.1. Let Z : L1 → L1 be a lattice contraction. Assume that Tk :
L1 → L1 (k = 1, . . . , d) are positive contractions such that such that ZTi = TiZ,

TiTj = TjTi, for every i, j ∈ {1, . . . , d}. If for some m ∈ N
d
0, k ∈ N

d
0 one has

‖Z(Tm+k −Tm)‖ < 2, then for any ε > 0 there are M ∈ N and n0 ∈ N
d
0 such

that

‖ZM(Tn+k −Tn)‖ < ε for all n ≥ n0.

Here Tn := T n1

1 · · ·T nd

d , n = (n1, . . . , nd) ∈ N
d
0.

Proof. Due to the assumption one can find δ > 0 such that ‖Z(Tm+k−Tm)‖ =
2(1− δ). Let us first prove that

(3.1) ‖Z(Tm+k −Tm+k ∧Tm)‖ < 1.

Assume that ‖Z(Tm+k −Tm+k ∧Tm)‖ = 1. Then (2.2) implies the existence
x ∈ L1 with x ≥ 0, ‖x‖ = 1 such that

‖Z(Tm+k −Tm+k ∧Tm)x‖ > 1−
δ

4
,

which with (2.1) yields that ‖ZTm+kx‖ > 1 − δ/4 and ‖Z(Tm+k ∧Tm)x‖ <

δ/4. From the commutativity of T and Z we get ‖ZTmx‖ > 1− δ/4.
Due to Z being a lattice contraction (see (2.14)), one has

|Z(Tm+k −Tm)| = ZTm+k + ZTm − 2Z(Tm+k ∧Tm).

Hence, the last equality with (2.11) implies that
∥

∥|Z(Tm+k −Tm)|x
∥

∥ = ‖ZTm+kx‖+ ‖ZTmx‖ − 2‖Z(Tm+k ∧Tm)x‖

> 1−
δ

4
+ 1−

δ

4
− 2 ·

δ

4

= 2

(

1−
δ

2

)

.

This with the equality
∥

∥|Z(Tm+k −Tm)|
∥

∥ = ‖Z(Tm+k −Tm)‖,

contradicts to ‖Z(Tm+k −Tm)‖ = 2(1− δ/2).
Due to (see [19, p. 310]) for Tk there is γ > 0 such that

(3.2)

∥

∥

∥

∥

(

I +Tk

2

)ℓ

−Tk

(

I +Tk

2

)ℓ∥
∥

∥

∥

≤
γ
√
ℓ
.

Let ε > 0 and fix ℓ ∈ N such that γ/
√
ℓ < ε/4.

From (3.1) according to Corollary 2.2 we have

(3.3)
∥

∥Z(Tℓ(m+k) − (Tm+k ∧Tm)ℓ)
∥

∥ < 1.

Hence,
∥

∥

∥

∥

Z

(

Tℓ(m+k) −

(

I +Tk

2

)ℓ

(Tm+k ∧Tm)ℓ
)∥

∥

∥

∥
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=

∥

∥

∥

∥

Z

(

Tℓ(m+k) −
1

2ℓ

ℓ
∑

i=0

(

ℓ

i

)

Tik(Tm+k ∧Tm)ℓ
)∥

∥

∥

∥

≤
1

2ℓ

ℓ
∑

i=0

(

ℓ

i

)

∥

∥Z(Tℓ(m+k) −Tik(Tm+k ∧Tm)ℓ)
∥

∥

≤
1

2ℓ

∥

∥Z(Tℓ(m+k) − (Tm+k ∧Tm)ℓ)
∥

∥+
1

2ℓ

ℓ
∑

i=1

(

ℓ

i

)

<
1

2ℓ
+

1

2ℓ

ℓ
∑

i=1

(

ℓ

i

)

= 1.(3.4)

Define

Qℓ := Tℓ(m+k) −

(

I +Tk

2

)ℓ

(Tm+k ∧Tm)ℓ

and put V
(1)
ℓ = (Tℓ(m+k) ∧ Tm)ℓ. Then ‖V

(1)
ℓ ‖ ≤ 1, since V

(1)
ℓ ≤ Tmℓ.

Moreover, one can see that

Tℓ(m+k) =

(

I +Tk

2

)ℓ

V
(1)
ℓ +Qℓ.

Now for every d ∈ N, define

V
(d+1)
ℓ = Tℓ(m+k)V

(d)
ℓ +V

(1)
ℓ Qd

ℓ .

Then by induction one can establish (see [19]) that

(3.5) Tdℓ(m+k) =

(

I +Tk

2

)ℓ

V
(d)
ℓ +Qd

ℓ

for every d ∈ N.
Due to Proposition 2.1 [20] one has

(3.6) ‖V
(d)
ℓ ‖ ≤ 2

for all d ∈ N.
It follows from (3.4) that ‖ZQℓ‖ < 1, therefore there exists M ∈ N such

that ‖(ZQℓ)
M‖ < ε/4. So, commutativity Z and T implies that ZQℓ = QℓZ,

which yields that ‖ZMQM
ℓ ‖ < ε/4.

Put n0 = Mℓ(m+ k), then from (3.5) with (3.2), (3.6) we obtain

‖ZM (Tn0+k − Tn0)‖ =

∥

∥

∥

∥

ZM

(

Tk

(

I +Tk

2

)ℓ

−

(

I +Tk

2

)ℓ)

V
(d)
ℓ

+ ZM (TkQM
ℓ −QM

ℓ )

∥

∥

∥

∥

≤

∥

∥

∥

∥

(

Tk

(

I +Tk

2

)ℓ

−

(

I +Tk

2

)ℓ)

V
(M)
ℓ

∥

∥

∥

∥
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+ ‖ZMQM
ℓ (Tk − 1)‖

≤ 2 ·
kγ
√
ℓ
+ 2 ·

ε

4
< ε.

Take any n ≥ n0, then from the last inequality one finds

‖ZM (Tn+k −Tn)‖ = ‖Tn−n0ZM (Tn0+k −Tn0)‖

≤ ‖ZM (Tn0+k −Tn0)‖ < ε

which completes the proof. �

Remark 3.2. The proved theorem is a multi-parametric generalization of the
main result of [12]. Hence, it generalizes all main results of [3, 4, 6, 13, 20].

We remark that in the spacial case Z = I Theorem 3.1 yields a multi-
dimensional extension of Foguel’s result [5]. Namely, we have:

Theorem 3.3. Let T1, . . . , Td be commuting positive contractions of L1. If

there exist m and k in N
d
0 such that ‖Tm+k − Tm‖ < 2, then for any ε > 0

there exists n0 ∈ N
d
0 such that

‖Tn+k −Tn‖ < ε for all n ≥ n0.

Corollary 3.4. Let T, S : L1 → L1 be two commuting positive contractions.

If for some k,m0 ∈ N one has ‖Tm0+kSm0 − Tm0Sm0‖ < 2, then

lim
n,m→∞

‖T n+kSm − T nSm‖ = 0.

The proof immediately follows from Theorem 3.3 if one takes m = (m0,m0)
and k = (k, 0).

Remark 3.5. It is clear that if for commuting T and S contractions of L1 one
has limn ‖T

n − T n+k1‖ = 0 and limn ‖S
n − Sn+k2‖ = 0 for some k1, k2 ∈ N,

then

lim
min(n,m)→∞

‖T nSm − T n+k1Sm+k2‖ = 0.

Remark 3.6. Since the dual of L1 is L∞ then due to the duality theory the
proved Theorem 3.1 holds true if we replace L1-space with L∞.
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