참고문헌
- Arani, A.G., Loghman, A., Barzoki, A.M. and Kolahchi, R. (2010), "Elastic buckling analysis of ring and stringer-stiffened cylindrical shells under general pressure and axial compression via the Ritz method", J. Solid Mech., 2(4), 332-347.
- Arasu, P., Sagayaraj, D. and Gowrishankar, J. (2011), "Seismic analysis of a wind turbine steel tower", Proceedings of the HyperWorks Technology Conference, Pune, India, August.
- Bazant, Z. and Cedolin, L. (2010), Stability of Structures. Elastic, Inelastic, Fracture and Damage Theories, World Scientific, Singapore.
- Bazeos, N., Hatzigeorgiou, G., Hondros, I., Karamaneas, H., Karabalis D.L. and Beskos, D. (2002), "Static, seismic and stability analyses of a prototype wind turbine steel tower", Eng. Struct., 24(8), 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4
- Bushnell, D. (1976), "Buckling of elastic-plastic shells of revolution with discrete elastic-plastic ring stiffeners", Int. J. Solids Struct., 12(1), 51-66. https://doi.org/10.1016/0020-7683(76)90072-X
- Calladine, C. (1989), Theory of Shell Structures, Cambridge University Press, Cambridge, England.
- Chen, L. and Rotter, J.M. (2012), "Buckling of anchored cylindrical shells of uniform thickness under wind load", Eng. Struct., 41, 199-208. https://doi.org/10.1016/j.engstruct.2012.03.046
- Chen, L., Doerich, C. and Rotter, J.M. (2008), "A study of cylindrical shells under global bending in the elastic-plastic range", Steel Construct., 1(1), 59-65. https://doi.org/10.1002/stco.200890008
- Chen, L., Rotter, J.M. and Doerich, C. (2011), "Buckling of cylindrical shells with stepwise variable thickness under uniform external pressure", Eng. Struct., 33(12), 3570-3578. https://doi.org/10.1016/j.engstruct.2011.07.021
- Dimopoulos, C. and Gantes, C. (2012), "Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending", Thin-Wall. Struct., 54, 140-155. https://doi.org/10.1016/j.tws.2012.02.011
- Dimopoulos, C. and Gantes, C. (2013), "Comparison of stiffening types of the cutout in tubular wind turbine towers", J. Construct. Steel Research, 83, 62-74. https://doi.org/10.1016/j.jcsr.2012.12.016
- DNV-RP-C202 (2013), Buckling Strength of Shells, DNV-GL.
- Documentation, Abaqus, and User Manual (2012), Version 6.12, Simulia, DassaultSystemes.
- European Convention for Constructional Steelwork (2008), Buckling of Steel Shells: European Recommendations, ECCS Publications; Brussels, Belgium.
- EN 1991-01-01 (2005), Eurocode 1: Actions on structures: Part 1-4: General actions-Wind actions, CEN.
- EN 1993-01-06 (2006), Eurocode 3: Design of Steel Structures: Part1-6: General Strength and Stability of Shell Structures, CEN.
- EN 1993-03-02 (2006), Eurocode 3: Design of Steel Structures: Part3-2: Towers, masts and chimneys-Chimneys, CEN.
- Flugge, W. (1932), "Die stabilitt der kreiszylinderschale", Ing. Arch., 5, 463-506.
- Galambos, T. (1998), Guide to Stability Design Criteria for Metal Structures, John Wiley& Sons, NJ, USA.
- Jansseune, A., De Corte, W., Vanlaere, W. and Van Impe, R. (2012), "Influence of the cylinder height on the elasto-plastic failure of locally supported cylinders", Steel Compos. Struct., Int. J., 12(4), 291-302. https://doi.org/10.12989/scs.2012.12.4.291
- Koiter, W.T. (1945), "On the Stability of Elastic Equilibrium", Ph.D. Dissertation; Delft University, Delft, The Netherlands. [In Dutch]
- Lavassas, I., Nikolaidis, G., Zervas, P., Efthimiou, E., Doudoumis, I. and Baniotopoulos, C.C. (2003), "Analysis and design of the prototype of a steel 1-MW wind turbine tower", Eng. Struct., 25(8), 1097-1106. https://doi.org/10.1016/S0141-0296(03)00059-2
- Lee, K. and Bang, H. (2013), "A study on the prediction of lateral buckling load for wind turbine tower structures", Int. J. Prec. Eng. Manuf., 13(10), 1829-1836. https://doi.org/10.1007/s12541-012-0240-y
- Lemak, D. and Studnicka, J. (2005), "Influence of ring stiffeners on a steel cylindrical shell", J. Adv. Eng. -Acta Polytechnica, 45(1), 56-63.
- Lundquist, E. (1933), "Strength tests of thin-walled duralumin cylinders in pure bending", Tech. Rep., National Advisory Committee for Aeronautics, NACA-TN-479, USA.
- Negm, H. and Maalawi, K. (2000), "Structural design optimization of wind turbine towers", Comp. Struct., 74(6), 649-666. https://doi.org/10.1016/S0045-7949(99)00079-6
- Nuta, E., Christopoulos, C. and Packer, J. (2011), "Methodology for seismic risk assessment for tubular steel wind turbine towers: application to Canadian seismic environment", Can. J. Civ. Eng., 38(3), 293-304. https://doi.org/10.1139/L11-002
- Ohga, M., Wijenayaka, A.S. and Croll, J.G.A. (2005), "Buckling of sandwich cylindrical shells under axial loading", Steel Compos. Stuct., Int. J., 5(1), 1-15. https://doi.org/10.12989/scs.2005.5.1.001
- Ragheb, M. (2013), "Safety of wind systems", Wind Power Systems Course Material; University of Illinois at Urbana-Champaign, IL, USA.
- Rebelo, C., Veljkovic, M., Matos, R. and Simoes da Silva, L. (2012a), "Structural monitoring of a wind turbine steel tower - Part II: monitoring results", Wind Struct., Int. J., 12(4), 301-311.
- Rebelo, C., Veljkovic, M., Simoes da Silva, L., Simoes, R. and Henriques, J. (2012b), "Structural monitoring of a wind turbine steel tower - Part I: system description and calibration", Wind Struct., Int. J., 12(4), 285-299.
- Rotter, J. (1987), "The buckling and plastic collapse of ring stiffeners at cone/cylinder junctions", Proceedings of International Colloquium on Stability of Plate and Shell Structures, Ghent, Belgium.
- Schneider, W. and Brede, A. (2005), "Consistent equivalent geometric imperfections for the numerical buckling strength verification of cylindrical shells under uniform external pressure", Thin-Wall. Struct., 43(2), 175-188. https://doi.org/10.1016/j.tws.2004.08.006
- Schneider, W. and Zahlten, W. (2004), "Load-bearing behavior and structural analysis of slender ringstiffened cylindrical shells under quasi-static wind load", J. Construct. Steel Res., 60(1), 125-146. https://doi.org/10.1016/j.jcsr.2003.08.002
- Singer, J. (2004), "Stiffened cylindrical shells", In: Buckling of Thin Metal Shells, Taylor and Francis, London, England, pp. 286-343.
- Speicher, G. and Saal, H. (1991), "Buckling of shell structures, on land, in the sea, and in the air: 466-475, Numerical calculation of limit loads for shells of revolution with particular regard to the applying equivalent initial imperfection", Elsevier Applied Science.
- Stathopoulos T. and Baniotopoulos, C.C. (2007), Wind Effects on Buildings and Design of Wind-Sensitive Structures, Springer Wien, New York, USA.
- Stavridou, N., Efthymiou, E., Gerasimidis, S. and Baniotopoulos, C. (2013), "Modelling of the structural response of wind energy towers stiffened by internal rings", Proceedings of the 10th HSTAM International Congress on Mechanics, Chania, Greece, June.
- Teng, J. (1996), "Buckling of thin shells: Recent advances and trends", App. Mech. Rev., 49(4), 263-274. https://doi.org/10.1115/1.3101927
- Teng, J. and Rotter, J. (2004), Buckling of Thin Metal Shells, Taylor and Francis, London, England.
- Timoshenko, S. and Gere, J. (1961), Theory of Elastic Stability, Tata McGraw-Hill Education, Noida, UP, India.
- Uys, P., Farkas, J., Jrmai, K. and Van Tonder, F. (2007), "Optimisation of a steel tower for a wind turbine structure", Eng. Struct., 29(7), 1337-1342. https://doi.org/10.1016/j.engstruct.2006.08.011
- Veljkovic, M., Heistermann, C. and Husson, W. (2006), "High-strength tower in steel for wind turbines", Tech. Rep., Publications Office of the European Union.
- Vinson, J. (1988), The Behavior of Thin Walled Structures: Beams, Plates, and Shells, Springer, Dordrecht, The Netherlands.
- Wojcik, M., Iwicki, P. and Tejchman, J. (2011), "3D buckling analysis of a cylindrical metal bin composed of corrugated sheets strengthened by vertical stiffeners", Thin-Wall. Struct., 49(8), 947-963. https://doi.org/10.1016/j.tws.2011.03.010
피인용 문헌
- Evaluation of Residual Compressive Strength and Behavior of Corrosion-Damaged Carbon Steel Tubular Members vol.11, pp.7, 2018, https://doi.org/10.3390/ma11071254
- Experimental assessment of I-shaped steel beams with longitudinal stiffeners under lateral-torsional buckling vol.85, pp.207, 2018, https://doi.org/10.15446/dyna.v85n207.71892
- Structural analysis and optimal design of steel lattice wind turbine towers vol.172, pp.8, 2015, https://doi.org/10.1680/jstbu.18.00074
- Life Cycle Analysis of lattice and tubular wind turbine towers. A comparative study. vol.410, pp.None, 2015, https://doi.org/10.1088/1755-1315/410/1/012071
- A comparative life-cycle analysis of tall onshore steel wind-turbine towers vol.4, pp.1, 2015, https://doi.org/10.1093/ce/zkz028
- Study of the Bearing Capacity of Stiffened Tall Offshore Wind Turbine Towers during the Erection Phase vol.13, pp.19, 2015, https://doi.org/10.3390/en13195102
- Lattice and Tubular Steel Wind Turbine Towers. Comparative Structural Investigation vol.13, pp.23, 2015, https://doi.org/10.3390/en13236325
- A Novel Tripod Concept for Onshore Wind Turbine Towers vol.14, pp.18, 2021, https://doi.org/10.3390/en14185772