DOI QR코드

DOI QR Code

Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study

폴리올과 붕산의 착화합물 형성원리를 이용한 수용액 중의 보론 제거에 관한 라만 분광학 연구

  • Eom, Ki Heon (Department of Chemical Engineering, Pukyong National University) ;
  • Jeong, Hui Cheol (Department of Chemical Engineering, Pukyong National University) ;
  • An, Hye Young (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Jun-Heok (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Jea-Keun (Department of Environmental Engineering, Pukyong National University) ;
  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University)
  • 엄기헌 (국립부경대학교 화학공학과) ;
  • 정희철 (국립부경대학교 화학공학과) ;
  • 안혜영 (국립부경대학교 화학공학과) ;
  • 임준혁 (국립부경대학교 화학공학과) ;
  • 이제근 (국립부경대학교 환경공학과) ;
  • 원용선 (국립부경대학교 화학공학과)
  • Received : 2015.08.07
  • Accepted : 2015.10.01
  • Published : 2015.12.01

Abstract

Boron is difficult to be removed from seawater by simple RO (reverse osmosis) membrane process, because the size of boric acid ($B(OH)_3$), the major form of aqueous boron, is as small as the nominal pore size of RO membrane. Thus, the complexation of boric acid with polyols was suggested as an alternative way to increase the size of aqueous boron compounds and the complexation behavior was investigated with Raman spectroscopy. As a reference, the Raman peak for symmetric B-O stretching vibrational mode both in boric acid and borate ion (${B(OH)_4}^-$) was selected. A Raman peak shift ($877cm^{-1}{\rightarrow}730cm^{-1}$) was observed to confirm that boric acid in water is converted to borate ion as the pH increases, which is also correctly predicted by frequency calculation. Meanwhile, the Raman peak of borate ion ($730cm^{-1}$) did not appear as the pH increased when polyols were applied into aqueous solution of boric acid, suggesting that the boric acid forms complexing compounds by combining with polyols.

해수 중에 보론은 주로 붕산(boric acid, $B(OH)_3$)으로 존재하며 그 크기가 역삼투압(RO, reverse osmosis) 공정의 막의 공칭공경(nominal pore size)만큼 작아 이를 제거하기가 쉽지 않다. 이에 본 연구에서는 수용액 중 보론 화합물의 크기를 역삼투압 공정에서 제거가 용이하도록 키우기 위한 방법으로 $B(OH)_3$가 폴리올과 착화합물을 형성하는 원리를 이용하고자하며 착화합물의 형성 여부를 라만 분광학 연구를 통해 확인하고자 하였다. 먼저 $B(OH)_3$와 붕산염(borate ion, ${B(OH)_4}^-$) 이온의 대칭(symmetric) B-O 신축운동 모드(stretching vibrational mode)의 진동수를 확인하기 위하여 pH를 증가시키며 라만 스펙트럼을 측정한 결과 $877cm^{-1}$에서 $730cm^{-1}$으로 피크의 이동이 관찰되었다. 이는 수용액 중의 $B(OH)_3$가 pH가 증가하면서 ${B(OH)_4}^-$로 전환됨을 나타내고 이러한 피크의 이동은 진동수 계산(frequency calculation)에 의한 예측과 정확하게 일치하였다. 반면 $B(OH)_3$ 수용액에 폴리올을 첨가한 경우 pH가 증가하여도 ${B(OH)_4}^-$의 특성 진동수인 $730cm^{-1}$가 나타나지 않았으며 이는 $B(OH)_3$${B(OH)_4}^-$로 전환되는 것이 아니라 폴리올과 착화합물을 형성함을 간접적으로 보여주고 있다.

Keywords

References

  1. Water, The Power, Promise, and Turmoil of North America's Fresh Water, National Geographic Special Edition(1993).
  2. Morris, R. M., "The Development of the Multi-stage Flash Distillation Process: a Designer's Point," Desalination, 93, 57-68 (1993). https://doi.org/10.1016/0011-9164(93)80096-6
  3. Ophir, A., Gendel, A. and Kronenberg, G., "The LT-MED Process for SW Cogen Plants," Desal. Water. Reuse., 4, 28-31(1994).
  4. Shaban, H. I., "Reverse Osmosis Membranes for Seawater Desalination State-of-the-art," Separ. Purif. Methods, 19, 121-131(1990). https://doi.org/10.1080/03602549008050934
  5. Khawaji, A. D., Kutubkhanah, I. K. and Wie, J.-M., "Advances in Seawater Desalination Technologies," Desalination, 221, 47-69(2008). https://doi.org/10.1016/j.desal.2007.01.067
  6. Lee, K. P., Arnot, T. C. and Mattia, D., "A Review of Reverse Osmosis Membrane Materials for Desalination-development to Date and Future Potemtial," J. Membr. Sci., 370, 1-22(2011). https://doi.org/10.1016/j.memsci.2010.12.036
  7. Nadav, N., "Boron Removal from Seawater Reverse Osmosis Permeate Utilizing Selective Ion Exchange Resin," Desalination, 124, 131-135(1999). https://doi.org/10.1016/S0011-9164(99)00097-1
  8. WHO, Boron in drinking water - Background document for development of WHO guidelines for drinking water quality(2009).
  9. Zeebe, R. E., Sanyal, A., Ortiz, J. D. and Wolf-Gladrow, D. A., "A Theoretical Study of the Kinetics of the Boric Acid-borate Equilibrium in Seawater," Mar. Chem., 73, 113-124(2001). https://doi.org/10.1016/S0304-4203(00)00100-6
  10. Maya, L., "Identification of Polyborate and Fluoropolyborate Ions in Solution by Raman Spectroscopy," Inorg. Chem., 15, 2179-2184(1976). https://doi.org/10.1021/ic50163a036
  11. Su, C. and Suarez, D. L., "Coordination of Adsorbed Boron - a FTIR Spectrosopic Study," Environ. Sci. Technol., 29, 302-311 (1995). https://doi.org/10.1021/es00002a005
  12. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. and Moulin, P., "Reverse Osmosis Desalination: Water Sources, Technology, and Today's Challenges," Water Res., 43, 2317-2348(2009). https://doi.org/10.1016/j.watres.2009.03.010
  13. Geffen, N., Semiat, R., Eisen, M. S., Balazs, Y., Katz, I. and Dosoretz, C. G., "Boron Removal from Water by Complexation to Polyol Compounds," J. Membr. Sci., 286, 45-51(2006). https://doi.org/10.1016/j.memsci.2006.09.019
  14. Glueckstern, P. and Priel, M., "Optimization of Boron Removal in old and New SWRO Systems," Desalination, 156, 219-228(2003). https://doi.org/10.1016/S0011-9164(03)00344-8
  15. Redondo, J., Busch, M. and Witte, J.-P.D., "Boron Removal from Seawater Using FILMTECTM High Rejection SWRO Membranes," Desalination, 156, 229-238(2003). https://doi.org/10.1016/S0011-9164(03)00345-X
  16. Power, P. P. and Woods, W. G., "The Chemistry of Boron and its Speciation in Plants," Plant Soil, 193, 1-13(1997). https://doi.org/10.1023/A:1004231922434
  17. Belcher, R., Tully, G. W. and Svehla, G., "A Comparative Study of Various Complexing Agents (polyols) Used in the Titration of Boric Acid," Anal. Chim. Acta, 50, 261-267(1970). https://doi.org/10.1016/0003-2670(70)80065-4
  18. Boeseken, J. and Vermaas, N., "On the Composition of Acid Boric Acid-diol Compounds," J. Phys. Chem., 35, 1477-1489 (1931).
  19. Dydo, P., Nems, I. and Turek, M., "Boron Removal and Its Concentration by Reverse Osmosis in the Presence of Polyol Compounds," Separ. Purif. Tech., 89, 171-180(2012). https://doi.org/10.1016/j.seppur.2012.01.018
  20. Kim, M.-K., Eom, K. H., Lim, J.-H., Lee, J.-K., Lee, J. D. and Won, Y. S., "Simple Boron Removal from Seawater by Using Polyols as Complexing Agents: A Computational Mechanistic Study," Korean J. Chem. Eng., 32, 1(2015). https://doi.org/10.1007/s11814-014-0286-x
  21. Won, Y. S., Lim, J.-H., Lee, J.-K., Kim, S. H. and Lee, T. Y., Method for removing boron in seawater using complex compound formation and subsequent reverse osmosis, Korea Patent No. 10-2013-0167585(2013).
  22. Park, B. S., Lee, J. S., Kim, M. S., Won, Y. S., Lim, J.-H. and Kim, S. H., "Enhanced Boron Removal Using Polyol Compounds in Seawater Reverse Osmosis Processes," Deswater, DOI:10.1080/19443994.2015.1038596.
  23. Won, Y. S., "Computational Study on the Decomposition of Tetraneopentyl Zirconium for the Chemical Vapor Deposition of Zirconium Carbide," Korean J. Chem. Eng., 29, 1438-1443(2012). https://doi.org/10.1007/s11814-012-0050-z
  24. Won, Y. S., "Exploration for the Potential Precursors for Zirconium Carbide Atomic Layer Deposition Via Comprehensive Computational Mechanistic Study of the Gas Phase Decomposition of Neopentyl Zirconium Derivatives," Korean J. Chem. Eng., 31, 2077-2080(2012).

Cited by

  1. Aqueous Boron Removal by Using Electrospun Poly(vinyl alcohol) (PVA) Mats: A Combined Study of IR/Raman Spectroscopy and Computational Chemistry vol.121, pp.11, 2017, https://doi.org/10.1021/acs.jpca.6b12578