DOI QR코드

DOI QR Code

Mechanical Properties of Carbon Nanotube/Polyurethane Nanocomposites via PPG Dispersion with MWCNTs

PPG와 탄소나노튜브의 혼합을 통한 탄소나노튜브/폴리우레탄 나노복합체의 기계적 물성

  • Kim, Dae Won (School of Chemical Engineering, College of Engineering, Chonbuk National University) ;
  • Kim, Jong Seok (School of Chemical Engineering, College of Engineering, Chonbuk National University)
  • 김대원 (전북대학교 화학공학부) ;
  • 김종석 (전북대학교 화학공학부)
  • Received : 2014.09.07
  • Accepted : 2015.07.01
  • Published : 2015.12.01

Abstract

In order to improve the dispersity of nanofiller, polyurethane (PU) nanocomposites were manufactured via poly(propylene gylcol) (PPG) dispersion with MWCNTs prepared by using a ball mill shaker. MWCNTs could be functionalized by treating with the hydrogen peroxide ($H_2O_2$). Tensile strengths and elongations at break of $PU/H_2O_2$ treated MWCNTs nanocomposites were enhanced compared to those of the PU/pristine MWCNTs nanocomposites. The good dispersion of MWCNTs shown in SEM images was obtained by the functionalization of MWCNTs surface. PU/carbon black (CB) composites showed no significant change in the tensile properties. The tensile properties of PU nanocomposites containing pristine MWCNTs or $H_2O_2$ treated MWCNTs were enhanced with increasing dispersion time. As a result, it was certified that the enhanced dispersity of nanofiller brought the improvement of the tensile properties of the MWCNTs based PU nanocomposites.

나노충전제의 우수한 분산성을 얻기 위하여 다중벽 탄소나노튜브(multiwall carbon nanotubes) (MWCNTs)와 poly(propylene gylcol)(PPG)을 ball mill shaker로 혼합한 분산액을 이용하여 폴리우레탄(PU) 나노복합체를 제조하였다. MWCNTs는 과산화수소($H_2O_2$)로 처리하여 표면을 기능화할 수 잇었다. 순수한 MWCNTs를 이용한 PU 나노복합체와 비교한 결과 $H_2O_2$로 처리한 MWCNTs를 이용한 PU 나노복합체의 인장강도와 신율이 높게 나타났다. SEM 이미지에서 보여진 MWCNTs의 우수한 분산성은 표면을 기능화시킴으로서 얻어진 것이다. Carbon black(CB)을 사용한 PU 복합체는 기계적 물성 변화가 거의 없었다. 분산시간의 증가에 따라 PU/MWCNTs 나노복합체들의 인장물성이 상승되었다. 결과적으로 나노충전제의 분산성 향상이 PU/MWCNTs 나노복합체의 인장물성 증가를 가져온 것을 확인하였다.

Keywords

References

  1. Sriram, V., Mahesh, G. N., Jeevan, R. G. and Radhakrishnan, G., "Comparative Studies on Short-chain and Long-chain Crosslinking in Polyurethane Networks," Macromol. Chem. Phys., 201, 2799-2804(2000). https://doi.org/10.1002/1521-3935(20001201)201:18<2799::AID-MACP2799>3.0.CO;2-G
  2. Oh, H., Kim, W., Lee, D. and Lee, Y., "Polyurethane Anionomers Based on Poly(butylene succinate), 4,4'-Methylenebis(phenyl isocyanate), and 2,2-Bis(hydroxymethyl)propionic Acid," J. Indus. Eng. Chem., 6, 425-430(2000).
  3. Kim, S. and Lee, D., "Effect of Polymerization Procedure on Thermal and Mechanical Properties of Polyether based Thermoplastic Polyurethanes," Macromol. Research., 10, 365-368(2002). https://doi.org/10.1007/BF03218331
  4. Kim, S., Li, M., Ramesan, S. and Lee, D., "Effects of Polyol Types and Hard Segment contents on the Crystallization of Thermoplastic Polyurethanes," Polymer-Korea, 29, 140-145(2005).
  5. Jin, S. and Lee, D., "Preparation and Properties of Nanocomposites Based on Poly(methyl methacrylate-co-butylacrylate) and Multiwalled Carbon Nanotube," J. Nanosci. Nanotech., 8, 4675-4678 (2008). https://doi.org/10.1166/jnn.2008.IC25
  6. Benli, S., Yilmazer, U., Pekel, F. and Ozkar, S., "Effect of Fillers on the Thermal and Mechanical Properties of Polyurethane Elastomer," J. Appl. Polym. Sci., 68, 1057-1065(1998). https://doi.org/10.1002/(SICI)1097-4628(19980516)68:7<1057::AID-APP3>3.0.CO;2-E
  7. Hur, W., Yun, D. and Song, K., "Preparation of Conductive Coating Solutions by Blending Waterborne Acrylic Polyurethane Dispersion with Carbon Nanotube," Korean Chem. Eng. Res., 51, 73-79 (2013). https://doi.org/10.9713/kcer.2013.51.1.73
  8. Yun, S., Im, H. and Kim, J., "Dispersity and Electro-conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method," Appl. Chem. Eng., 21, 500-504(2010).
  9. Peng, Y. and Liu, H., "Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes," Ind. Eng. Chem. Res., 45, 6483-6488(2006). https://doi.org/10.1021/ie0604627
  10. Lee, S. H., Choi, S. H., Kim, S. Y. and Youn, J. R., "Effects of Thermal Imidization on Mechanical Properties of Poly(amide-co-imide)/Multiwalled Carbon Nanotube Composite Films," J. Appl. Polym. Sci., 117, 3170-3180(2010).
  11. Ma, J., Zhang, S. and Qi, Z., "Synthesis and Characterization of Elastomeric Polyurethane/Clay Nanocomposites," J. Appl. Polym. Sci., 82, 1444-1448(2001). https://doi.org/10.1002/app.1982
  12. Jung, M. and Cho, J., "Mechanical, Thermal and Electrical Properties of Carbon Nanotube-Polyurethane Nanocomposites," J. Korean Fiber. Soc., 41, 73-79(2004).
  13. Gong, X., Baskaran, S., Voise, R. D. and Young, J. S., "Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites," Chem. Mater., 12, 1049-1052(2000). https://doi.org/10.1021/cm9906396
  14. Zhang, R, Dowden, A., Baxendale, M. and Peijs, T., "Conductive Network Formation in the Melt of Carbon Nanotube/Thermoplastic Polyurethane Composite," Composite. Sci. Tech., 69 1499-1504 (2009).
  15. Crunlan, J., Mehrabi, A., Bannon, M. and Bahr, J., "Water-Based Single-Walled-Nanotube-Filled Polymer Composite with an Exceptionally Low Percolation Threshold," Advan. Mater., 16, 150-153 (2004). https://doi.org/10.1002/adma.200305409
  16. Jurewicz, I., Worajittiphon, P., King, A., Sellin, P., Keddie, J. and Dalton, A., "Locking Carbon Nanotubed Lattice Geometries-A Route to Low Percolation in Conducting Composites," J. Phys. Chem. B., 115, 6395-6400(2011). https://doi.org/10.1021/jp111998p

Cited by

  1. 1,3-Dipolar cycloaddition 반응을 통해 기능화된 carbon nanotube 표면 위에 균일계 촉매 담지 및 에틸렌 중합 vol.54, pp.4, 2016, https://doi.org/10.9713/kcer.2016.54.4.574
  2. 불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성 vol.54, pp.6, 2015, https://doi.org/10.9713/kcer.2016.54.6.830
  3. 유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.646
  4. Poly(urethane-urea)/Thin-Walled Carbon Nanotube 나노복합체의 제조 및 특성 vol.57, pp.2, 2020, https://doi.org/10.12772/tse.2020.57.106