DOI QR코드

DOI QR Code

합류부 하상고 불일치에 의한 두부침식 및 분리구역 특성분석

An Analysis for the Characteristics of Headward Erosion and Separation Zone due to Bed Discordance at Confluence

  • 투고 : 2015.05.25
  • 심사 : 2015.09.09
  • 발행 : 2015.11.30

초록

본 연구는 지류의 합류각, 지류와 본류의 유량비, 준설 깊이비의 변화에 따른 지류에서의 두부침식 양상과 합류부 이동상 하도에서의 분리구역의 특성을 분석하였다. 분리구역은 지류가 합류되어진 직후 단면에서의 유속이 0(영)인 구간으로 정의하였다. 준설 깊이에 따른 두부침식이 발생치 않은 범위를 제시하였다. 합류각, 유량비, 준설 깊이비 증가에 따른 두부침식 깊이비 및 천급점의 이동거리비는 전반적으로 증가하였으며, 천급점의 이동거리비의 관계식을 제시하였다. 이동상 하도에서의 유량비와 합류각 증가에 따른 분리구역의 길이비 및 폭비는 고정상 하도에서와 같은 양상으로 증가하였다. 준설 깊이비 증가에 따른 분리구역의 길이비는 감소하고 폭비은 증가하여 형상지수는 크게 증가하여 통수단면의 감소로 배수위 현상이 기대된다. 고정상 하도와 이동상하도에서의 합류각, 유량비, 준설 깊이비에 따른 형상지수 관계식을 제안하였다.

The pattern of headward erosion at tributary and the separation zone formation in a loosed bed at confluence according to the confluence angle, discharge ratio, and dredging depth ratio have been analyzed. The separation zone is defined the inside of zero velocity boundary at downstream of confluence. The limit of separation zone occurrence is presented with dredging depth ratio. The propagation length of knickpoint increases as the confluence angle, discharge ratio, and dredging depth ratio increase in general and its regression equation has been suggested. The length and width ratios of separation zone in a loosed bed increase as discharge ratio and confluence angle increase as well as in a fixed bed. The length ratio decreases and the width ratio increases as dredging depth ratio increases results in great increase of shape factor and backwater rise by the conveyance reduction at confluence. The regression equation of shape factor with confluence angle, discharge ratio, and dredging depth ratio has been suggested.

키워드

참고문헌

  1. Best, J.L., and Reid, I. (1984). "Separation zone at openchannel junction." Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 11, pp. 1588-1594. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1588)
  2. Brush, L.M., and Wolman, M.G. (1960). "Knickpoint behavior in noncohesive material: a laboratory study." Bulletin of the Geological Society of America, Vol. 71,No. 1, pp. 59-74. https://doi.org/10.1130/0016-7606(1960)71[59:KBINMA]2.0.CO;2
  3. Choi, G.W., Ahn, K.H., and Jung, J.K. (2010). "Analysis of the characteristics of the river bed variation by flow direction changes at a channel junction." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 10, No. 5, pp. 117-124 (in Korean).
  4. Frankel, K.L., Pazzaglia, F.J., and Vayghn, J.D.(2007). "Knickpoint evolution in a vertically bedded substrate, upstream-dipping terraces, and Atlantic slope bedrock channels." Geological Society of America Bulletin, Vol. 119, No.3/4, pp. 476-486. https://doi.org/10.1130/B25965.1
  5. Jang, C.L. (2012). "2-Dimensional numerical simulation of the behaviors of knickpoint in the channel with noncohesive materials." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 12, No. 6, pp. 259-265 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.6.259
  6. Ji, U., and Jang, E.K. (2014). "Numerical analysis of flow and bed changes due to tributary inflow variation at the confluence of the Namhan river and the Geumdang stream." J. of Korea Water Resources Association, KWRA, Vol. 47, No.11, pp. 1027-1037 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.11.1027
  7. Jia, Y., and Wang, S.S.Y. (2001). CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loosed bed. NCCHETR-2001-1, School of Engineering, The University of Mississippi, USA.
  8. Kim, K.M. (2014). Numerical analysis of alluvial channel characteristics at confluent channel. M. Sc. thesis of Yeungnam University (in Korean).
  9. Liu, T., Chen, L., and Fan, B. (2012). "Experimental study on flow pattern and sediment transportation at a $90^{\circ}$open-channel confluence." International Journal of Sediment Research, Vol. 27, No. 2, pp. 178-187. https://doi.org/10.1016/S1001-6279(12)60026-2
  10. Modi, P.N., Ariel, P.D., and Dandekar, M.M. (1981). "Conformal apping for channel junction flow." Journal of Hydraulic Engineering, ASCE, Vol. 107, No. 12, pp. 1713-1733.
  11. Park, Y.S. (2003). The analysis of hydraulic characteristics depending upon the variation of discharge and approaching angle at channel junctions. Ph. D. dissertation of Incheon University (in Korean).
  12. Ribeiro, M.L., Blanckaert, K., Roy, A.G., and Schleiss, A.J. (2012). "Flow and sediment dynamics in channel confluences." Journal of the Geophysical Research, Vol. 117, FO1035.
  13. Schippa, L., and Pavan S. (2009). "Bed evolution numerical model for rapidly varying flow in natural streams." Computers & Geosciences, Vol. 35, pp. 390-402. https://doi.org/10.1016/j.cageo.2008.08.004
  14. Taylor, E.H. (1944). "Flow characteristics at rectangular open-channel junction." Journal of Hydraulic Engineering, ASCE, Vol. 10, No. 6, pp. 893-902.
  15. Vasquez, J.A., Miller, R.G., and Steffler, P.M. (2006). Two-dimensional morphological simulation in transcritical flow. River, Coastal and Estuarine Morphodynamics: RCEM 2005-Parker and Garcia(eds), pp. 253-258.
  16. Wu, W. (2001). CCHE2D sediment transport model (version 2.1), NCHHE-TR-2001-3, School of Engineering, The University of Mississippi, USA.
  17. Wu, W., Wang, S.S.Y., and Jia, Y. (2000). "Nonuniform sediment transport in alluvial rivers." Journal of Hydraulic Research, IAHR, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296
  18. Zhang, Y., Wang, P., Wu, B., and Hou, S. (2015). "An experimental study of fluvial processes at asymmetrical river confluences with hyperconcentrated tributary flows." Geomorphology, Vol. 230, pp. 26-36. https://doi.org/10.1016/j.geomorph.2014.11.001