DOI QR코드

DOI QR Code

Production of Liquiritigenin with Cell-based Biotransformation and Its Anti-Aging Activity

균사체 생물전환기술을 이용한 리퀘리티게닌 생산과 항노화 활성

  • Hwang, Hye Jin (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Jeong, Sang Chul (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Park, Jong Pil (Department of Pharmaceutical Engineering, Daegu Haany University)
  • 황혜진 (대구한의대학교 제약공학과) ;
  • 정상철 (대구한의대학교 제약공학과) ;
  • 박종필 (대구한의대학교 제약공학과)
  • Received : 2015.06.17
  • Accepted : 2015.08.19
  • Published : 2015.08.27

Abstract

In this study, an efficient whole cell-based biotransformation for the production of liquiritigenin was developed using Laetiporus sulphureus CS0218 as biocatalyst and aqueous extracts of Glycyrrhiza uralensis as co-substrate, respectively. In order to determine the efficacy of this method, the optimal bioconversion conditions including mycelial growth, three important enzyme activities (${\beta}$-glucosidase, ${\alpha}$-rhamnosidase and ${\beta}$-xylosidase), and apparent viscosity of culture broth were monitored. After optimization, aqueous extracts of G. uralensis were added to the culture medium to directly produce algycone liquiritigenin. By applying this strategy, 67.5% of liquiritin was converted to liquiritigenin at pH 3.0 after 9 days of incubation and finally liquiritigenin was purified from the reaction mixture. And then, their biological activities including anti-oxidant and superoxide dismutase were observed. In fact, purified liquiritigenin was capable of bi-directional functions (i.e., either up-regulation or down-regulation of SIRT1 which is associated with aging). The results indicate that this strategy would be beneficial to produce biologically active liquiritigenin and could be used in pharmaceutical, cosmetic and food applications.

Keywords

References

  1. Kim, Y. W., S. H. Ki, J. R. Lee, S. J. Lee, C. W. Kim, S. C. Kim, and S. G. Kim (2006) Liquiritigenin, an aglycone of liquiritin in Glycyrrhizae radix, prevents acute liver injuries in rats induced by acetaminophen with or without buthionine sulfoximine. Chem. Biol. Interact. 161: 125-138. https://doi.org/10.1016/j.cbi.2006.03.008
  2. Lee, J. Y., J. H. Lee, J. H. Park, S. Y. Kim, J. Y. Choi, S. H. Lee, Y. S. Kim, S. S. Kang, E. C. Jang, and Y. M. Han (2009) Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not. Int. Immunopharmacol. 9: 632-638. https://doi.org/10.1016/j.intimp.2009.02.007
  3. Zhao, Z., W. Wang, H. Guo, and D. Zhou (2008) Antidepressantlike effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav. Brain Res. 194: 108-113. https://doi.org/10.1016/j.bbr.2008.06.030
  4. Kim, Y. W., R. J. Zhao, S. J. Park, J. R. Lee, I. J. Cho, C. H. Yang, S. G. Kim, and S. C. Kim (2008) Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-eB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154: 165-173. https://doi.org/10.1038/bjp.2008.79
  5. Peter, K., J. Schinnerl, S. Felsinger, L. Brecker, R. Bauer, H. Breiteneder, R. Xu, and Y. Ma (2013) A novel concept for detoxification: complexation between aconitine and liquiritin in a Chinese herbal formula (‘Sini Tang’). J. Ethnopharmacol. 149: 562-569. https://doi.org/10.1016/j.jep.2013.07.022
  6. Liu, Y., S. Xie, Y. Wang, K. Luo, Y. Wang, and Y. Cai (2012) Liquiritigenin inhibits tumor growth and vascularization in a mouse model of HeLa cells. Molecules. 17: 7206-7216. https://doi.org/10.3390/molecules17067206
  7. Zhou, M., H. Higo, and Y. Cai (2010) Inhibition of hepatoma 22 tumor by Liquiritigenin. Phytother. Res. 24: 827-833.
  8. Cho, K. M., S. Y. Hong, R. K. Math, J. H. Lee, D. M. Kambiranda, J. M. Kim, S. M. A. Islam, M. G. Yun, J. J. Cho, W. J. Lim, and H. D. Yun (2009) Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114: 413-419. https://doi.org/10.1016/j.foodchem.2008.09.056
  9. Chun, J., G. M. Kim, K. W. Lee, I. D. Choi, G. H. Kwon, J. Y. Park, S. J. Jeong, J. S. Kim, and J. H. Kim (2007) Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food Sci. 72: M39-M44. https://doi.org/10.1111/j.1750-3841.2007.00276.x
  10. Chien, H. L., H. Y. Huang, and C. C. Chou (2006) Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772-778. https://doi.org/10.1016/j.fm.2006.01.002
  11. Kim, J. H., J. T. Bae, M. H. Song, G. S. Lee, S. Y. Choe, and H. B. Pyo (2010) Biological activities of fructus arctii fermented with the basidiomycete Grifola frondosa. Arch. Pharm. Res. 33: 1943-1951. https://doi.org/10.1007/s12272-010-1209-y
  12. Xue, Y., J. Yu, and X. Song (2009) Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima. J. Ind. Microbiol. Biotechnol. 36: 1401-1408. https://doi.org/10.1007/s10295-009-0626-8
  13. Yang, H. and L. Zhang (2009) Changes in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum. Food Chem. 112: 1-5. https://doi.org/10.1016/j.foodchem.2008.05.024
  14. Hong, M. R., Y. S. Kim, A. R. Joo, J. K. Lee, Y. S. Kim, and D. K. Oh (2009) Purification and characterization of a thermostable beta- 1,3-1,4-glucanase from Laetiporus sulphureus var. miniatus. J. Microbiol. Biotechnol. 19: 818-822.
  15. Hwang, H. S., S. H. Lee, Y. M. Baek, S. W. Kim, Y. K. Jeong, and J. W. Yun (2008) Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl. Microbiol. Biotechnol. 78: 419-429. https://doi.org/10.1007/s00253-007-1329-6
  16. Gern, R. M., E. Wisbeck, J. R. Rampinelli, J. L. Ninowd, and S. A. Furlan (2008) Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresour. Technol. 99: 76-82. https://doi.org/10.1016/j.biortech.2006.11.059
  17. Hwang, H. S. and J. W. Yun (2010) Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocin-induced diabetic rats. Biotechnol. Bioprocess Eng. 15: 173-181. https://doi.org/10.1007/s12257-009-0160-6
  18. Kang, C. Y., C. O. Lee, K. S. Chung, E. C. Choi, and B. K. Kim (1982) An antitumor component of Laetiporus sulphureus and its immunostimulating activity. Arch. Pharm. Res. 5: 39-43. https://doi.org/10.1007/BF02856406
  19. Klaus, A., M. Kozarski, M. Niksic, D. Jakovljevic, N. Todorovic, I. Stefanoska, and L. J. Van Griensven (2013) The edible mushroom Laetiporus sulphureus as potential source of natural antioxidants. Int. J. Food Sci. Nutr. 64: 599-610. https://doi.org/10.3109/09637486.2012.759190
  20. Lung, M. Y. and W. Z. Huang (2013) Antioxidant potential and antioxidant compounds of extracts from the medicinal sulphur polypore, Laetiporus sulphureus (higher Basidiomycetes) in submerged cultures. Int. J. Med. Mushrooms. 15: 569-582. https://doi.org/10.1615/IntJMedMushr.v15.i6.50
  21. Park, J. P., S. W. Kim, H. J. Hwang, and J. W. Yun (2001) Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol. 33: 76-81. https://doi.org/10.1046/j.1472-765X.2001.00950.x
  22. Park, J. P., Y. M. Kim, S. W. Kim, H. J. Hwang, Y. J. Cho, Y. S. Lee, C. H. Song, and J. W. Yun (2002) Effect of agitation intensity on the exo-biopolymer production and mycelial morphology in Cordyceps militaris. Lett. Appl. Microbiol. 34: 433-438. https://doi.org/10.1046/j.1472-765X.2002.01126.x
  23. Zhu, Y., H. Zhang, M. Cao, Z. Wei, F. Huang, and P. Gao (2011) Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnol. Bioprocess Eng. 16: 1027-1035. https://doi.org/10.1007/s12257-011-0129-0
  24. Kim, S. S., J. S. Lee, J. Y. Cho, Y. E. Kim, and E. K. Hong (2012) Effects of C/N ratio and trace elements on mycelial growth and exo-polysaccharide production of Tricholoma matsutake. Biotechnol. Bioprocess Eng. 15: 293-298.
  25. Kwon, J. S., J. S. Lee, W. C. Shin, K. E. Lee, and E. K. Hong (2009) Optimization of culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Cordyceps militaris in liquid culture. Biotechnol. Bioprocess Eng. 14: 756-762. https://doi.org/10.1007/s12257-009-0024-0
  26. Ghorai, S., S. Mukherjee, and S. Khowala (2011) Improved production and properties of β-glucosidase influenced by 2-deoxy-dglucose in the culture medium of Termitomyces clypeatus. Biotechnol. Bioprocess Eng. 16: 297-304. https://doi.org/10.1007/s12257-010-0236-3
  27. Singh, S., C. Tyagi, D. Dutt, and J. Upadhyaya (2009) Production of high level of cellulase-poor xylanases by wild strains of whiterot fungus Coprinellus disseminatus in solid-state fermentation. N. Biotechnol. 26: 165-170. https://doi.org/10.1016/j.nbt.2009.09.004
  28. Yang, M. C., D. S. Kim, and J. Y. Ma (2012) Bioconversion composition of Ssanghwa-tang fermented by Lactobacillus fermentum. Biotechnol. Bioprocess Eng. 17: 84-92. https://doi.org/10.1007/s12257-011-0296-z
  29. Lee, J. W., H. Y. Kim, B. W. Koo, D. H. Choi, M. Kwon, and I. G. Choi (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J. Biosci. Bioeng. 106: 162-167. https://doi.org/10.1263/jbb.106.162
  30. Sinha, J., J. T. Bae, J. P. Park, K. H. Kim, C. H. Song, and J. W. Yun (2001) Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl. Microbiol. Biotechnol. 56: 88-92. https://doi.org/10.1007/s002530100606
  31. Choi, D. B., J. H. Lee, Y. S. Kim, M. S. Na, O. Y. Choi, H. D. Lee, M. K. Lee, and W. S. Cha (2011) A study of mycelial growth and exopolysaccharide production from a submerged culture of Mycoleptodonoides aitchisonii in an air-lift bioreactor. Korean J. Chem. Eng. 28: 1427-1432. https://doi.org/10.1007/s11814-011-0109-2
  32. Kim, S. W., H. J. Hwang, H. M. Kim, M. C. Lee, M. Shik Lee, J. W. Choi, and J. W. Yun (2006) Effect of fungal polysaccharides on the modulation of plasma proteins in streptozotocin-induced diabetic rats. Proteomics. 6: 5291-5302. https://doi.org/10.1002/pmic.200500933
  33. Seo, M. J., M. J. Kim, H. H. Lee, S. R. Kim, B. W. Kang, J. U. Park, E. J. Rhu, Y. H. Choi, and Y. K. Jeong (2011) Initial acidic pH is critical for mycelial cultures and functional exopolysaccharide production of an edible mushroom, Laetiporus sulphureus var. miniatus JM 27. J. Microbiol. 48: 881-884.
  34. Liu, R. T., L. B. Zou, J. Y. Fu, and Q. J. Lu (2010) Effects of liquiritigenin treatment on the learning and memory deficits induced by amyloid [beta]-peptide (25-35) in rats. Behav. Brain Res. 210: 24-31. https://doi.org/10.1016/j.bbr.2010.01.041
  35. Takei, M., M. Kobayashi, X. D. Li, R. B. Pollard, and F. Suzuki (2005) Glycyrrhizin inhibits R5 HIV replication in peripheral blood monocytes treated with 1-methyladenosine. Pathobiology 72: 117-123. https://doi.org/10.1159/000084114
  36. Porcu, M. and A. Chiarugi (2005) The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol. Sci. 26: 94-103. https://doi.org/10.1016/j.tips.2004.12.009
  37. Howitz, K. T., K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski, L. L. Zhang, B. Scherer, and D. A. Sinclair (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196. https://doi.org/10.1038/nature01960
  38. Kim, Y. W., Y. M. Kim, Y. M. Yang, H. Y. Kay, W. D. Kim, J. W. Lee, S. J. Hwang, and S. G. Kim (2011) Inhibition of $LXR\alpha$- dependent steatosis and oxidative injury by liquiritigenin, a licorice flavonoid, as mediated with Nrf2 activation. Antioxid. Redox Signal. 14: 733-745. https://doi.org/10.1089/ars.2010.3260
  39. Zhang, S. P., Y. J. Zhou, Y. Liu, and Y. Q. Cai (2009) Effect of liquiritigenin, a flavanone existed from Radix glycyrrhizae on proapoptotic in SMMC-7721 cells. Food Chem. Toxicol. 47: 693-701. https://doi.org/10.1016/j.fct.2008.12.015