DOI QR코드

DOI QR Code

Fabrication and Characterization of Hydroxyapatite/Mullite and Tricalcium Phosphate/Al2O3 Composites Containing 30 wt% of Bioactive Components

  • Ha, Jung-Soo (School of Materials Science and Engineering, Andong National University)
  • Received : 2015.06.29
  • Accepted : 2015.08.17
  • Published : 2015.09.30

Abstract

Mullite-matrix and $Al_2O_3$-matrix composites were fabricated with 30 wt% hydroxyapatite (HA) and tricalcium phosphate (TCP), respectively, as additives to give bioactivity. A diphasic gel process was employed to lower the densification temperature of the mullite matrix to $1320^{\circ}C$. A polymer complexation process was used to synthesize a TCP powder that was fully densified at $1250^{\circ}C$, for application to the matrix. For the HA/mullite composite, HA decomposed during sintering by reactions with the matrix components of $Al_2O_3$ and $SiO_2$, resulting in a mixture of $Al_2O_3$, TCP, and other minor phases with a low densification of less than 88% of the theoretical density (TD). In contrast, the TCP/$Al_2O_3$ composite was highly densified by sintering at $1350^{\circ}C$ to 96%TD with no reaction between the components. Different from the TCP monolith, the TCP/$Al_2O_3$ composite also showed a fine microstructure and intergranular fracture, both of which characteristics are advantageous for strength and fracture toughness.

Keywords

References

  1. W. Suchanek and M. Yoshimura, "Processing and Properties of Hydroxyapatite-based Biomaterials for Use as a Hard Tissue Replacement Implants," J. Mater. Res., 13 [1] 94-117 (1998). https://doi.org/10.1557/JMR.1998.0015
  2. H. Y. Juang and M. H. Hon, "Fabrication and Mechanical Properties of Hydroxyapatite-alumina Composites," Mater. Sci. Eng. C, 2 77-81 (1994). https://doi.org/10.1016/0928-4931(94)90033-7
  3. J. Li, B. B. Fartash, and L. Hermansson, "Hydroxyapatitealumina Composites and Bone-bonding," Biomaterials, 16 417-22 (1995). https://doi.org/10.1016/0142-9612(95)98860-G
  4. S. Gautier, E. Champion, and D. B. Assollant, "Processing, Microstructure and Toughness of Al2O3 Platelet-reinforced Hydroxyapatite," J. Eur. Ceram. Soc., 17 1361-69 (1997). https://doi.org/10.1016/S0955-2219(97)89403-4
  5. B. Viswanath and N. Ravishankar, "Interfacial Reactions in Hydroxyapatite/Alumina Nanocomposites," Scripta Mater., 55 863-66 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.049
  6. Y. X. Pang, X. Bao, and L. Weng, "Preparation of Tricalcium Phosphate/Alumina Composite Nanoparticles and Self-reinforcing Composites by Simultaneous Precipitation," J. Mater. Sci., 39 6311-23 (2004). https://doi.org/10.1023/B:JMSC.0000043601.46284.a0
  7. E. Adolfsson, P. Alberius-Henning, and L. Hermansson, "Phase Analysis and Thermal Stability of Hot Isostatically Pressed Zirconia-hydroxyapatite Composites," J. Am. Ceram. Soc., 83 2798-802 (2000).
  8. R. R. Rao and T. S. Kannan, "Synthesis and Sintering of Hydroxyapatite-zirconia Composites," Mater. Sci. Eng. C, 20 187-93 (2002). https://doi.org/10.1016/S0928-4931(02)00031-0
  9. V. V. Silva, F. S. Lamerias, and R. Z. Dominguez, "Microstructural and Mechanical Study of Zirconia-hydroxyapatite (ZH) Composite Ceramics for Biomedical Applications," Comps. Sci. Technol., 61 301-10 (2001). https://doi.org/10.1016/S0266-3538(00)00222-0
  10. S. Nath, K. Biswas, K. Wang, R. K. Bordia, and B. Basu, "Sintering, Phase Stability, and Properties of Calcium Phosphate-mullite Composites," J. Am. Ceram. Soc., 93 [6] 1639-49 (2010).
  11. I. Manjubala and M. Sivakumar, "In-situ Synthesis of Biphasic Calcium Phosphate Ceramics Using Microwave Irradiation," Mater. Chem. Phys., 71 272-78 (2001). https://doi.org/10.1016/S0254-0584(01)00293-0
  12. Z. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka, and K. Niihara, "Dense Hydroxyapatite Composites with High Strength for Biological Applications," Adv. Mater., 13 [3] 214-16 (2001). https://doi.org/10.1002/1521-4095(200102)13:3<214::AID-ADMA214>3.0.CO;2-5
  13. Y. -M. Kong, C. -J. Bae, S. -H. Lee, H. -W. Kim, and H. -E. Kim, "Improvement in Biocompatibility of $ZrO_2-Al_2O_3$ Nano-composite by Addition of HA," Biomaterials, 26 509-17 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.061
  14. S. Sakka, F. B. Ayed, and J. Bouaziz, "Mechanical Properties of Tricalcium Phosphate-alumina Composites," IOP Conference Series: Mater. Sci. Eng., 28 [1] 012028 (2012). https://doi.org/10.1088/1757-899X/28/1/012028
  15. S. Sakka, J. Bouaziz, and F. B. Ayed, "Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine," pp. 23-50 in Advances in Biomaterials Science and Biomedical Applications. Ed. by R. Pignatello, INTECH, 2013.
  16. A. Priya, S. Nath, K. Biswas, and B. Basu, "In Vitro Dissolution of Calcium Phosphate-mullite Composite in Simulated Body Fluid," J. Mater. Sci.: Mater. Med., 21 1817-28 (2010). https://doi.org/10.1007/s10856-010-4053-1
  17. J. -S. Ha and K. K. Chawla, "The Effect of Precursor Characteristics on the Crystallization and Densification of Diphasic Mullite Gels," Ceram. Int., 19 299-305 (1993). https://doi.org/10.1016/0272-8842(93)90042-P
  18. S. -J. Lee, S. -I. Ko, M. -H. Lee, and N. -S. Oh, "Fabrication of Nano-sized β-TCP Powder by an Organic-inorganic Solution Route," J. Ceram. Proc. Res., 8 [4] 281-84 (2007).
  19. H. -J. Kleebe, G. Pezzotti, and G. Ziegler, "Microstructure and Fracture Toughness of $Si_3N_4$ Ceramics: Combined Roles of Grain Morphology and Secondary Phase Chemistry," J. Am. Ceram. Soc., 82 [7] 1857-67 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02009.x
  20. J. H. She and K. Ueno, "Effect of Additive Content on Liquid- phase Sintering on Silicon Carbide Ceramics," Mater. Res. Bull., 34 [10/11] 1629-36 (1999). https://doi.org/10.1016/S0025-5408(99)00172-5

Cited by

  1. Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites vol.28, pp.3, 2018, https://doi.org/10.3740/MRSK.2018.28.3.142
  2. Hydroxyapatite와 Al2O3 혼합분말의 상압소결에 의한 TCP/Al2O3 및 Fluorapatite/Al2O3 복합재료의 In-Situ 제조 vol.29, pp.2, 2015, https://doi.org/10.3740/mrsk.2019.29.2.129
  3. The effect of alumina additive and sintering temperature on the microstructural, physical, mechanical, and bioactivity properties of hydroxyapatite-alumina composites vol.56, pp.2, 2015, https://doi.org/10.1007/s41779-019-00345-3