DOI QR코드

DOI QR Code

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S. (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Park, Beom-Kyeong (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Jong-Won (New and Renewable Energy Research Division, Korea Institute of Energy Research)
  • 투고 : 2015.07.29
  • 심사 : 2015.08.24
  • 발행 : 2015.09.30

초록

An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

키워드

참고문헌

  1. J. P. P. Huijsmans, F. P. van Berkel, and G. M. Christie, "Intermediate Temperature SOFC - a Promise for the 21st Century," J. Power Sources, 71 [1-2] 107-10 (1998). https://doi.org/10.1016/S0378-7753(97)02789-4
  2. W. Z. Zhu and S. C. Deevi, "Development of Interconnect Materials for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 348 [1-2] 227-43 (2003). https://doi.org/10.1016/S0921-5093(02)00736-0
  3. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, "Application of Fe-16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell," Solid State Ionics, 143 [2] 131-50 (2001). https://doi.org/10.1016/S0167-2738(01)00863-3
  4. I. Antepara, I. Villarreal, L. M. Rodríguez-Martínez, N. Lecanda, U. Castro, and A. Laresgoiti, "Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs," J. Power Sources, 151 [1-2] 103-7 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.084
  5. J. W. Fergus, "Metallic Interconnects for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 397 [1-2] 271-83 (2005). https://doi.org/10.1016/j.msea.2005.02.047
  6. X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, and L. C. De Jonghe, "Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties," Solid State Ionics, 176 [5-6] 425-33 (2005). https://doi.org/10.1016/j.ssi.2004.10.004
  7. P. Huczkowski, N. Christicmsen, V. Shemet, L. Niewolak, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, "Growth Mechanisms and Electrical Conductivity of Oxide Scales on Ferritic Steels Proposed as Interconnect Materials for SOFC's," Fuel Cells, 6 [2] 93-9 (2006). https://doi.org/10.1002/fuce.200500110
  8. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, "Selection and Evaluation of Heat-resistant Alloys for SOFC Interconnect Applications," J. Electrochem. Soc., 150 [9] A1188-201 (2003). https://doi.org/10.1149/1.1595659
  9. S. J. Geng, J. H. Zhu, and Z. G. Lu, "Evaluation of Several Alloys for Solid Oxide Fuel Cell Interconnect Application," Scr. Mater., 55 [3] 239-42 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.008
  10. Y. Matsuzaki and I. Yasuda, "Dependence of SOFC Cathode Degradation by Chromium-containing Alloy on Compositions of Electrodes and Electrolytes," J. Electrochem. Soc., 148 [2] A126-31 (2001). https://doi.org/10.1149/1.1339869
  11. Y. D. Zhen, J. Li, and S. P. Jiang, "Oxygen Reduction on Strontium-Doped LaMnO3 Cathodes in the Absence and Presence of an Iron-chromium Alloy Interconnect," J. Power Sources, 162 [2] 1043-52 (2006). https://doi.org/10.1016/j.jpowsour.2006.08.034
  12. S. N. Lee, A. Atkinson, and J. A. Kilner, "Effect of Chromium on $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$-Solid Oxide Fuel Cell Cathodes," J. Electrochem. Soc., 160 [6] F629-35 (2013). https://doi.org/10.1149/2.099306jes
  13. Z. Yang, G. G. Xia, X. H. Li, and J. W. Stevenson, "$(Mn,Co)_3O_4$ Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications," Int. J. Hydrogen Energy, 32 [16] 3648-54 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.048
  14. W. Qu, L. Jian, J. M. Hill, and D. G. Ivey, "Electrical and Microstructural Characterization of Spinel Phases as Potential Coatings for SOFC Metallic Interconnects," J. Power Sources, 153 [1] 114-24 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.137
  15. W. Quadakkers, "Compatibility of Perovskite Contact Layers between Cathode and Metallic Interconnector Plates of SOFCs," Solid State Ionics, 91 [1-2] 55-67 (1996). https://doi.org/10.1016/S0167-2738(96)00425-0
  16. D. P. Lim, D. S. Lim, J. S. Oh, and I. W. Lyo, "Influence of Post-treatments on the Contact Resistance of Plasma- Sprayed $La_{0.8}Sr_{0.2}MnO_3$ Coating on SOFC Metallic Interconnector," Surf. Coatings Technol., 200 [5-6] 1248-51 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.131
  17. J. J. Choi, D. S. Park, B. D. Hahn, J. Ryu, and W. H. Yoon, "Oxidation Behavior of Ferritic Steel Alloy Coated with Highly Dense Conducting Ceramics by Aerosol Deposition," J. Am. Ceram. Soc., 91 [8] 2601-6 (2008). https://doi.org/10.1111/j.1551-2916.2008.02506.x
  18. J. J. Choi, J. Ryu, B. D. Hahn, W. H. Yoon, B. K. Lee, J. H. Choi, and D. S. Park, "Ni-containing Conducting Ceramic as an Oxidation Protective Coating on Metallic Interconnects by Aerosol Deposition," J. Am. Ceram. Soc., 1618 1614-18 (2010).
  19. C. S. Ni, D. F. Zhang, C. Y. Ni, and Z. M. Wang, "Ruddlesden- Popper Nickelate as Coating for Chromia-forming Stainless Steel," Int. J. Hydrogen Energy, 39 13314-19 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.147
  20. W. Z. Zhu and S. C. Deevi, "Opportunity of Metallic Interconnects for Solid Oxide Fuel Cells: A Status on Contact Resistance," Mater. Res. Bull., 38 [6] 957-72 (2003). https://doi.org/10.1016/S0025-5408(03)00076-X
  21. P. Odier, M. Municken, M. Crespin, F. Dubois, P. Mouron, and J. Choisnet, "Sol-gel Synthesis and Structural Characterisation of the Perovskite Type Pseudo Solid Solution $LaNi_{0.5}Cu_{0.5}O_3$," J. Mater. Chem., 12 [5] 1370-73 (2002). https://doi.org/10.1039/b200034m
  22. M. Bevilacqua, T. Montini, C. Tavagnacco, G. Vicario, P. Fornasiero, and M. Graziani, "Influence of Synthesis Route on Morphology and Electrical Properties of $LaNi_{0.6}Fe_{0.4}O_3$," Solid State Ionics, 177 [33-34] 2957-65 (2006). https://doi.org/10.1016/j.ssi.2006.08.018
  23. R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst., A32 751-67 (1976).
  24. Y. Zhang, A. Javed, M. Zhou, S. Liang, and P. Xiao, "Fabrication of Mn-Co Spinel Coatings on Crofer 22 APU Stainless Steel by Electrophoretic Deposition for Interconnect Applications in Solid Oxide Fuel Cells," Int. J. Appl. Ceram. Technol., 11 [2] 332-41 (2014). https://doi.org/10.1111/ijac.12013
  25. B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, C. O. Park, and R. H. Song, "Cu- and Ni-Doped $Mn_{1.5}Co_{1.5}O_4 $Spinel Coatings on Metallic Interconnects for Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 38 [27] 12043-50 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.025
  26. R. Chiba, F. Yoshimura, and Y. Sakurai, "An Investigation of $LaNi_{1-x}Fe_xO_3$ as a Cathode Material for Solid Oxide Fuel Cells," Solid State Ionics, 124 [3] 281-88 (1999). https://doi.org/10.1016/S0167-2738(99)00222-2
  27. E. Bucher and W. Sitte, "Defect Chemical Analysis of the Electronic Conductivity of Strontium-substituted Lanthanum Ferrite," Solid State Ionics, 173 [1-4] 23-28 (2004). https://doi.org/10.1016/j.ssi.2004.07.047
  28. K. Park, J. S. Son, S. I. Woo, K. Shin, M. W. Oh, S. D. Park, and T. Hyeon, "Colloidal Synthesis and Thermoelectric Properties of La-doped $SrTiO_3$ Nanoparticles," J. Mater. Chem. A, 2 [12] 4217-24 (2014). https://doi.org/10.1039/c3ta14699e
  29. J. Y. Tak, S. M. Choi, W. S. Seo, and H. K. Cho, "Thermoelectric Properties of a Doped $LaNiO_3$ Perovskite System Prepared Using a Spark-plasma Sintering Process," Electron. Mater. Lett., 9 [4] 513-16 (2013). https://doi.org/10.1007/s13391-013-0034-0
  30. Y. Xu, Z. Wen, S. Wang, and T. Wen, "Cu Doped Mn-Co Spinel Protective Coating on Ferritic Stainless Steels for SOFC Interconnect Applications," Solid State Ionics, 192 [1] 561-64 (2011). https://doi.org/10.1016/j.ssi.2010.05.052

피인용 문헌

  1. Perovskite Coatings on Metallic Interconnects for Solid Oxide Fuel Cells vol.163, pp.10, 2016, https://doi.org/10.1149/2.1171610jes
  2. Applying multifunctional perovskite LaNiO3 as electrolyte and anode for low‐temperature solid oxide fuel cell vol.32, pp.4, 2021, https://doi.org/10.1007/s10854-020-05164-y