DOI QR코드

DOI QR Code

장려품종 누에고치의 구조 및 기계적 특성

Structure and mechanical properties of Korean commercial silkworm cocoon

  • 김성국 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김기영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김현복 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Kim, Sung-Kuk (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Kee-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun-bok (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2015.09.17
  • 심사 : 2015.10.26
  • 발행 : 2015.10.31

초록

의료용 소재 등 비섬유용 소재로서 누에고치를 활용하기 위한 기초 연구의 일환으로 우리나라의 대표적인 장려품종인 금옥잠 누에고치와 대성잠 누에고치의 특성을 고찰하여 다음과 같은 결과를 얻었다. 금옥잠과 대성잠은 타원형의 누에고치를 지으며, 색상의 RGD 비율은 거의 1 : 1 : 1이었다. 주요 아미노산 조성은 글리신, 알라닌, 세린, 티로신, 아스파르트산 등이 주요 아미노산이었다. 글리신, 알라닌, 세린 등 주요 아마노산의 함량이 각각 66.96%, 67.39%로 나타났으며, 친수성 아미노산이 68%, 69%, 그리고 아미노산의 사슬이 긴 아미노산은 전체 구성 아미노산 중에서 각각 38%, 37%인 것으로 나타났다. 장려품종 누에고치는 $2{\theta}=20.6^{\circ}$ 부근에서 강한 하나의 회절 피크를 나타내어 ${\beta}-sheet$ 구조를 가지고 있는 것으로 판단된다. 금옥잠 누에고치와 대성잠 누에고치의 인장 특성은 금옥잠 누에고치의 절단강도는 50 MPa, 절단신도는 37%로 측정되었으며, 대성잠 누에고치는 절단강도는 48 MPa, 절단신도는 30%로 측정되었다. 이러한 장려품종 누에고치의 특성에 대한 조사 분석 결과를 축적하여 향후 누에고치를 이용한 비섬유용 소재 개발의 기초 자료로 활용될 수 있을 것으로 기대한다.

Korean commercial Bombyx mori silkworm cocoon made by Kumokjam and Daesungjam was examined to characterize for application. Amino acid analysis showed that the main amino acid of Kumokjam and Daesungjam cocoon was glycine, alanine, serine, tyrosine, and aspartic acid. The content of three major amino acids was about 67% and the content of long chain amino acids was about 37%. Stress-strain curve showed that breaking stress of Kumokjam cocoon, 50 MPa, was higher than that of Daesungjam cocoon, 48 MPa. Breaking strain of Kumokjam cocoon, 37%, was also longer than that of Daesungjam cocoon, 30%. These results might be used as basic information for development of non-textile materials using Bombyx mori silkworm cocoon.

키워드

참고문헌

  1. Cho HY, Baik YA, Jeon SY, Kwak YH, Kweon HY, Jo YY, Lee KG, Park YH, Kang DC (2013) Growth and osteoblastic differentiation of mesenchymal stem cells on silk scaffolds. Int J Indust Entomol 27, 303-311. https://doi.org/10.7852/ijie.2013.27.2.303
  2. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs paper patch. Wound Rep Regen 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  3. Kim SK, Jo YY, Lee KG, Lee HS, Yeo JH, Kweon HY (2014) Preparation and characterization of silk beads for protein delivery system. Int J Indust Entomol 28, 66-70. https://doi.org/10.7852/ijie.2014.28.2.66
  4. Kweon HY, Jo YY, Lee KG, Kim HB, Yeo JH (2014) Silk polymer for medical applications. J Seric Entomol Sci 52, 89-95.
  5. Kweon HY, Kim SG, An JH, Shim HW, Yang BE, Kim JY, Jo YY, Yeo JH, Lee KG (2010) Silk fibroin membrane as guided bone regeneration in rat calvarial defects. Int J Indust Entomol 21, 175-179.
  6. Kweon HY, Lee KG, Park KY, Kang SW. Seok YS (2012) Degumming characteristics and color stability of GoldenSilk cocoon. Int J Indust Entomol 24, 1-5. https://doi.org/10.7852/ijie.2012.24.1.001
  7. Kweon HY, Park YH (1994) Structural characteristics and physical properties of wild silk fibers; Antheraea pernyi and Antheraea yamamai. Korean J Seric Sci 36, 138-146.
  8. Kweon HY, Park YH (1999) Structural and conformational changes of regenerated Antheraea pernyi silk fibroin films treated tith methanol solution. J Appl Polym Sci 73, 2887-2894. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2887::AID-APP12>3.0.CO;2-I
  9. Kweon HY, Park YH (2001) Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci 82, 750-758. https://doi.org/10.1002/app.1901
  10. Lee KW, Chung DE, Kim KY, Jo YY, Kim HB, Kim SK, Kweon HY (2015) General characteristics of Antheraea yamamai silkworm cocoon culured in Korea. J Seric Entomol Sci 53, 6-11.
  11. Seok H, Lee SW, Kim SG, Seo DH, Kim HS, Kweon HY, Jo YY, Kang TY, Lee MJ, Chae WS (2013) The effect of silk membrane plus 3% 4-hexylresorcinol on guided bone generation in a rabbit calvarial defect model. Int J Indust Entomol 27, 209-217. https://doi.org/10.7852/ijie.2013.27.1.209
  12. Tsukada M (1986) Structural changes induced in tussah silk (Antheraea pernyi) fibroin films by immersion in methanol. J Polym Sci Pt B-Polym Phys 24, 1227-1232.
  13. Zhao CX, Wu XF, Zhang QA, Yang SQ, Li MZ (2011) Enzymatic degradation of Antheraea pernyi silk fibroin 3D scaffolds and fibers. Int J Biol Macromol 48, 249-255. https://doi.org/10.1016/j.ijbiomac.2010.11.004