참고문헌
- Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, 1st Edition, CRC Press.
- Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Meth. Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
- Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-38. https://doi.org/10.1002/nme.1620100103
- Belytschko, T., Lu, Y.Y., Gu, L. and Tabbara, M. (1995), "Element-free Galerkin methods for static and dynamic fracture", Int. J. Solid. Struct., 32(17-18), 2547-2570. https://doi.org/10.1016/0020-7683(94)00282-2
- Bhardwaj, G., Singh, I.V. and Mishra, B.K. (2015), "Stochastic fatigue crack growth simulation of interfacical crack in bi-layered FGMs using XIGA", Comput. Meth. Appl. Mech. Eng., 284, 186-229. https://doi.org/10.1016/j.cma.2014.08.015
- Braun, J. and Sambridge, M. (1995), "A numerical method for solving partial differential equations on highly irregular evolving grids", Nature, 376, 655-660. https://doi.org/10.1038/376655a0
- Cherepanov, G.P. (1967), "The propagation of cracks in a continuous medium", J. Appl. Math. Mech., 31(3), 503-512. https://doi.org/10.1016/0021-8928(67)90034-2
- Chinesta, F., Cescotto, S., Cueto, E. and Lorong, P. (2011), Natural Element Method for the Simulation of Structures and Processes, John Wiley & Sons, New Jersey.
- Ching, H.K. and Batra, R.C. (2001), "Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 2(2), 273-289.
- Cho, J.R. and Lee, H.W. (2006a), "A Petrov-Galerkin natural element method securing the numerical integration accuracy", J. Mech. Sci. Tech., 20(1), 94-109. https://doi.org/10.1007/BF02916204
- Cho, J.R. and Lee, H.W. (2006b), "2-D large deformation analysis of nearly incompressible body by natural element method", Comput. Struct., 84, 293-304. https://doi.org/10.1016/j.compstruc.2005.09.019
- Cho, J.R. and Lee, H.W. (2007), "2-D frictionless dynamic contact analysis of large deformable bodies by Petrov-Galerkin natural element method", Comput. Struct., 85, 1230-1242. https://doi.org/10.1016/j.compstruc.2006.11.024
- Cho, J.R., Lee, H.W. and Yoo, W.S. (2013), "Natural element approximation of Reissner-Mindlin plate for locking-free numerical analysis of plate-like thin elastic structures", Comput. Meth. Appl. Mech. Eng., 256, 17-28. https://doi.org/10.1016/j.cma.2012.12.015
- Cho, J.R. and Lee, H.W. (2014), "Calculation of stress intensity factors in 2-D linear fracture mechanics by Petrov-Galerkin natural element method", Int. J. Numer. Meth. Eng., 98, 819-839. https://doi.org/10.1002/nme.4666
- Dolbow, J. and Gosz, M. (2002), "On the computation of mixed-mode stress intensity factors in functionally graded materials", Int. J. Solid. Struct., 39(9), 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2
- Fan, S.C., Liu, X. and Lee, C.K. (2004), "Enriched partition-of-unity finite element method for stress intensity factors at crack tips", Comput. Struct., 82, 445-461. https://doi.org/10.1016/j.compstruc.2003.10.019
- Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40, 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
- Henshell, R.D. and Shaw, K.G. (1975), "Crack tip elements are unnecessary", Int. J. Numer. Meth. Eng., 9, 495-507. https://doi.org/10.1002/nme.1620090302
- Hibbitt, H.D. (1977), "Some properties of singular isoparametric elements", Int. J. Numer. Meth. Eng., 11, 180-184. https://doi.org/10.1002/nme.1620110117
- Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traveling a plate", J. Appl. Mech., 24, 361-364.
- Liu, X.Y., Xiao, Q.Z. and Karihaloo, B.L. (2004), "XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials", Int. J. Numer. Meth. Eng., 59, 1103-1118. https://doi.org/10.1002/nme.906
- Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
-
Nie, Z.F., Zhou, S.J., Han, R.J., Xiao, L.J. and Wang, K. (2011), "
$C^1$ natural element method for strain gradient linear elasticity and its application to microstructures", Acta Mechanica Sinica, 28(1), 91-103. https://doi.org/10.1007/s10409-011-0540-y - Pant, M., Singh, I.V. and Mishra, B.K. (2011), "A novel enrichment criterion for modeling kinked cracks using element free Galerkin method", Int. J. Mech. Sci., 68, 140-149.
- Pena, E., Martinez, M.A., Calvo, B. and Doblare, M. (2008), "Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues", Comput. Meth. Appl. Mech. Eng., 197(21-24), 1983-1996. https://doi.org/10.1016/j.cma.2007.12.018
- Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61, 2316-2343. https://doi.org/10.1002/nme.1151
- Rao, B.N. and Rahman, S. (2000), "An efficient meshless method for fracture analysis of cracks", Comput. Mech., 26, 398-408. https://doi.org/10.1007/s004660000189
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
- Rice, J.R. and Tracey, D.M. (1973), Computational fracture mechanics. Numerical and Computer Methods in Structural Mechanics, Eds. Fenves, S.J. et al., Academic Press.
- Rooke, D.O. and Cartwright, D.J. (1976), Compendium of Stress Intensity Factors, The Hillingdon Press.
- Shi, J., Ma, W. and Li, N. (2013), "Extended meshless method based on partition of unity for solving multiple crack problems", Meccanica, 43(9), 2263-2270.
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatig., 36, 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- Strang, G. and Fix, G.J. (1973), An Analysis of the Finite Element Method, Prentice-Hall, New Jersey.
- Sukumar, N., Moran, B. and Belytschko, T. (1998), "The natural element method in solid mechanics", Int. J. Numer. Meth. Eng., 43, 839-887. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
- Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7, 297-308. https://doi.org/10.1002/nme.1620070307
- Xiao, Q.Z., B.L. Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Int. J. Fract., 125, 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13
- Yau, J.F., Wang, S.S. and Corten, H.T. (1980), "A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity", J. Appl. Mech., 47, 335-341. https://doi.org/10.1115/1.3153665
- Yvonnet, J., Ryckelynck, D., Lorong, P. and Chinesta, F. (2004), "A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method (C-NEM)", Int. J. Numer. Meth. Eng., 60(8), 1451-1474. https://doi.org/10.1002/nme.1016
- Zhang, Z., Liew, K.M., Cheng, Y. and Lee, Y.Y. (2008), "Analyzing 2D fracture problems with the improved element-free Galerkin method", Eng. Anal. Bound. Elem., 32, 241-250. https://doi.org/10.1016/j.enganabound.2007.08.012