DOI QR코드

DOI QR Code

Effect of different feeding times using a diet containing betaine on production, blood profile and a short chain fatty acid in meat ducks exposed to a scorching heat wave

베타인 사료의 급여시기가 폭염에 노출된 오리의 짧은 사슬지방산, 혈액 프로파일 및 생산성에 미치는 효과

  • Bang, Han-Tae (Poultry Science Division, National Institute of Animal Science, RDA) ;
  • Hwangbo, Jong (Poultry Science Division, National Institute of Animal Science, RDA) ;
  • Kang, Hwan-Ku (Poultry Science Division, National Institute of Animal Science, RDA) ;
  • Park, Byung-Sung (College of Animal Life Science, Kangwon National University)
  • Received : 2015.08.12
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

The effects of different feeding times, using a diet containing 800 ppm betaine, on production, blood profile, and the short-chain fatty acid (SCFA), was investigated using 240 Cherry Valley (Anas platyrhynchos) meat ducks exposed to a scorching heat wave. The animals were randomly assigned to four groups, each of which was replicated three times with twenty ducks per replicate. The experimental period was 42 days for each group. Four groups were assigned into C (heat wave control group without betaine), T1 (ad libitum group fed a diet containing 800 ppm betaine), T2 (diet-restricted group fed twice daily between 05:00-10:00 and 17:00-20:00, using a diet containing 800 ppm betaine), and T3 (night-restricted group, fed from 17:00-10:00, with a diet containing 800 ppm betaine). At 42 days, body weight increased in order of T2, T1, T3 compared to the heat wave control group although. However, these differences were not found between the groups of T1 and T3. The heat wave control group, provided an ad libitum diet without betaine (C), showed an elevated feed conversion ratio compared to the groups fed a diet containing betaine. However, these differences were not found between the groups of T1, T2 and T3. RBC and platelet profiles except for PLT and MPV showed statistically significant differences between study groups fed a diet containing betaine. T2 presented significantly higher blood electrolytes $Na^+$ and $Cl^-$ than the other groups. T2 also showed a blood gas level that was generally higher than the other groups. Total SCFA, acetic acid and propionic acid concentration has been the increasing trend in T2, but butyric acid, isobutyric acid and valeric acid concentration has been the decreasing trend in T2 compared to the other groups. It is concluded that the feeding-restricted group, fed two times daily between 05:00-10:00 and 17:00-20:00, with a diet containing 800 ppm betaine may improve growth performance in meat ducks exposed to a scorching heat wave.

폭염에 노출된 육용오리에서 짧은 사슬지방산(short chain fatty acid, SCFA), 혈액 프로파일 및 생산성에 관한 베타인 800 ppm 함유사료의 급여시기 별 차이를 조사하였다. 오리 (Cherry valley, Anas platyrhynchos) 240 마리를 4처리 3반복(반복 당 20마리)으로 완전임의배치 한 후 42일 간 사육하였다. 4개의 처리구는 C(베타인 무첨가 폭염 대조군), T1(베타인 800 ppm 사료 무제한 급여군), T2(베타인 800 ppm 사료 오전 05:00-10:00, 오후 17:00-20:00 제한급여군), T3(베타인 800 ppm 사료 17:00-10:00 야간 제한급여군)로 구분하였다. 42일령 체중은 T2, T1, T3 순서로 베타인 사료 급여시기 처리구가 폭염 대조군에 비해서 증가하였으나 T1, T3 사이의 유의차는 없었다. 사료요구율은 베타인을 함유하지 않은 사료의 무제한 급여 폭염 대조군이 베타인 사료의 급여시기 처리군에 비해서 높았으나 T1, T2, T3 사이의 유의차는 없었다. PLT, MPV를 제외한 적혈구 및 혈소판의 프로파일은 베타인 함유사료를 급여하는 시기에 따라서 통계적인 유의차가 인정되었다. 혈액 $K^+$를 제외한 $Na^+$, $Cl^-$은 베타인 함유사료를 오전, 오후로 구분하여 급여해준 T2가 다른 두 개의 처리군에 비해서 유의하게 높았다. 혈액 가스는 T2가 다른 두 개의 처리군에 비해서 일반적으로 높은 경향을 보였다. 총 SCFA, 초산, 프로피온산은은 T2가 다른 두 개의 처리군에 비해서 높은 경향을 보였으나 이와 반대로 뷰티르산, 이소뷰티르산, 발레르산, 이소발레르산은 일반적으로 낮았다. 이상의 결과는 폭염에 노출된 오리에서 베타인 800 ppm을 함유하는 사료의 오전 05:00-10:00, 오후 17:00-20:00 급여가 베타인의 약리학적 기작을 통한 성장능력을 개선할 수 있음을 나타낸다.

Keywords

References

  1. S. Sharma, K. Ramesh, I. Hyder, S. Uniyal, V. P. Yadav, R.P. Panda, V.P. Maurya, G. Singh, P. Kumar, A. Mitra, and M. Sarkar, Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (Caprahircus) exposed to heat stress, Small Ruminant Res, 112, 216 (2013). https://doi.org/10.1016/j.smallrumres.2012.12.008
  2. R. J. Etches, T. M. John, and A. M. V. Gibbins, Behavioural, physiological, neuroendocrine and molecular responses to heat stress, In: Nuhad J. Daghir (ed.), Poultry production in hot climates, Trowbridge. Cromwell press, 49 (2008).
  3. N. Mahmoudnia, and Y. Madani, Effect of betaine on performance and carcass composition of broiler chicken in warm weather-A review, Int. J. Agri. Sci, 2, 675 (2012).
  4. M. A. M. Sayed, and J. Downing, The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens, Poultry Science, 90, 157 (2011) https://doi.org/10.3382/ps.2009-00594
  5. M. H. Tamzil, R. R. Noor, P. S. Hardjosworo, W. Manalu, and C. Sumantri, Hematological response of chickens with different heat shock protein 70 genotypes to acute heat stress, Int. J. Poult. Sci, 13, 14 (2014). https://doi.org/10.3923/ijps.2014.14.20
  6. S. A. Borges, A. Majorka, D. M. Hooge, and K. R. Cummingst, Physiological responses of broiler chickens to heat stress and dietary electrolyte balance(sodium plus potassium minus chloride, milliequivalents per kilogram, Poult. Sci, 83, 1551 (2004). https://doi.org/10.1093/ps/83.9.1551
  7. E. Habibu, N. M. Ikira, H. U. Buhari, T. Aluwong, M. U. Kawu, L. S. Yaqub, M. Tauheed, and H. I. Isa, Effect of molasses supplementation on live weight gain, haematologic parameters and erythrocyte osmotic fragility of broiler chickens in the hot-dry season, Inter. J. Vet. Sci, 3, 181 (2014).
  8. M. Toyomizu, M. Tokuda, M. Ahmad, and Y. Akiba, Progressive alteration to core temperature, respiration and blood acid-base balance in broiler chickens exposed to acute heat stress, Jpn. Poult. Sci. 42, 110 (2005) https://doi.org/10.2141/jpsa.42.110
  9. A. R. Gupta, R. C. Putra, D. Saini, and M. Swarup, Haematology and serum biochemistry of Chital (Axis axis) and barking deer (Muntiacus muntjak) reared in semi-captivity, Vet. Res. Commun, 31, 801 (2007). https://doi.org/10.1007/s11259-006-0095-8
  10. M. Eklund, E. Bauer, J. Wamatu, and R. Mosenthin, Potential nutritional and physiological functions of betaine in livestock, Nutr. Res. Rev, 18, 31 (2005). https://doi.org/10.1079/NRR200493
  11. J. Remus, Betaine for increased breast meat yield in turkeys, World Poultry, 17, 14 (2001).
  12. I. S. A. Zulkifi, Mysahra, and L. Z. Jin, Dietary supplementation of betaine (betafin [R]) and response to high temperature stress in male broiler chickens, Asian-Aust. J. Anim. Sci, 17, 244 (2004). https://doi.org/10.5713/ajas.2004.244
  13. A. Ratriyanto, R. Mosenthin1, E. Baueri, and M. Eklund, Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals, Asian-Aust. J. Anim. Sci, 22, 1461 (2009). https://doi.org/10.5713/ajas.2009.80659
  14. Y. Z. Wang, Z. R. Xu, and J. Feng, The effect of betaine and DL-methionine on growth performance and carcass characteristics in meat ducks, Anim. Feed Sci. Technol, 116, 151 (2004). https://doi.org/10.1016/j.anifeedsci.2004.05.003
  15. A. L. Awad, H. N. Fahim, A. F. Ibrahim, and M. M. Beshara, Effect of dietary betaine supplementation on productive and reproductive performance of Domyati duck under summer condition, Egypt. Poult. Sci, 34, 453 (2014). https://doi.org/10.21608/epsj.2014.5356
  16. J. Hwangbo, H. T. Bang, H. K. Kang, I. S. Yuh, and B. S. Park, Effect of dietary betaine on short chain fatty acid and blood profile in meat duck exposed to extreme heat stress, Kor J. Oil Chem, Submit (2015).
  17. M. Sahraei., Feed restriction in broiler chickens production: A review, Global Veterinaria, 8, 449 (2012).
  18. S. O Park, .B. S. Park, J. Hwangbo, and H. C. Choi, Effects of cooling water and inverse lighting on short chain fatty acid and blood lipid of broiler chickens in closed poultry house during hot weather, Kor J. Oil Chem, 31, 31 (2014). https://doi.org/10.12925/jkocs.2014.31.1.31
  19. SAS, SAS/STAT User's Guide: Statistics. Version 6.0. SAS Institute Inc., Cary, North Carolina. USA (2005).
  20. H. Lin, H. C. Jiao, J. Buyse, and E. Decuypere, Strategies for preventing heat stress in poultry, World's Poult. Sci. J, 62, 71 (2006). https://doi.org/10.1079/WPS200585
  21. L. D. G. Bruno, Maiorka. A, Macari. M, Furlan. RL, Givisiez. PEN, Water intake behavior of broiler chickens exposed to heat stress and drinking from bell or and nipple drinkers, Brazilian Journal of Poultry Science, 13, 147 (2011).
  22. M. Sahraei, Feed restriction in broiler chickens production: A Review, Global Veterinaria, 8, 449 (2012).
  23. W. Aengwanich, Effects of high environmental temperature on blood indices of thai indigenous chickens, thai indigenous chickens crossbred and broilers, Int. J. Poult. Sci, 6, 427 (2007). https://doi.org/10.3923/ijps.2007.427.430
  24. P. E. Hilman, N. R. Scot, and A. Van Tienhoven, Physiological, responses and adaption to hot and cold environments, in: Yousef MK (Ed.). Stress Physiology in Livestock, Poult. CRC Press. Florida, 1, 71 (2000).
  25. M. H. Tamzil, R. R. Noor, P. S. Hardjosworo, W. Manalu, and C. Sumantri, Acute heat stress response of three lines of chickens with different heat shock protein (HSP) 70 genotypes, Int. J. Poult. Sci, 12, 264 (2013). https://doi.org/10.3923/ijps.2013.264.272
  26. M. K. Turkyilmaz, Effect of stocking density on stress reaction in broiler chickens during summer, Turk. J. Vet, Anim. Sci, 32, 31 (2008).
  27. B. V. S. Kumar, G. Singh, and S. K. Meur, Effects of addition of electrolyte and ascorbic acid in feed during heat stress in buffaloes, Asian-Aust, J. Anim. Sci, 23(6), 880 (2010). https://doi.org/10.5713/ajas.2010.90053
  28. I. Zulkifli, S. A. Mysahra, and L. Z. Jin, Dietary supplementation of betaine and response a high temperature stress in male broiler chickens, Asian-Aust. J. Anim. Sci, 17, 244 (2004). https://doi.org/10.5713/ajas.2004.244
  29. S. A. Borges, A. V. F. D. Silva, and A. Maiorka, Acid-base balance in broilers, WPSA, 63, 73 (2007). https://doi.org/10.1017/S0043933907001286
  30. G. R. Gibson, and R. A. Rastall, Prebiotics: Development and application. John Wiley and Sons, Ltd, USA (2006).
  31. J. Gong, R. J. Forster, H. Yu, J. R. Chambers, P. M. Sabour, R. Wheatcroft, and S. Chen, Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen, FEMS Microbiol. Lett, 208, 1 (2002). https://doi.org/10.1111/j.1574-6968.2002.tb11051.x

Cited by

  1. 폭염 하에서 음수 내 비타민 C와 트리메칠글리신 공급이 오리의 혈액 매개변수 및 생산성에 미치는 효과 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.411
  2. 대사에너지가 열 스트레스에 노출된 오리의 혈액 생체지표에 미치는 영향 vol.34, pp.1, 2015, https://doi.org/10.12925/jkocs.2017.34.1.132