DOI QR코드

DOI QR Code

호스트 부하 경감 달성을 위한 zynq SoC를 적용한 FC-NIC 설계에 관한 연구

A Study of FC-NIC Design Using zynq SoC for Host Load Reduction

  • 투고 : 2015.08.21
  • 심사 : 2015.10.07
  • 발행 : 2015.10.30

초록

본 논문은 IMA (integrated modular avionics) 기반의 공통기능 모듈의 5대 구성 요소 중의 하나인 네트워크 유닛을 구성하는 데 필요한 FC-NIC (fibre channel network interface card)의 설계 제작 및 성능 평가 결과를 나타내고자 한다. 특히 호스트 부하 경감을 위해 zynq SoC (system on chip)를 사용하여 FC-NIC을 구현하였다. 호스트는 송신하고자 하는 메시지 또는 데이터에 대하여 FC 수신자 주소, 호스트 메모리 위치와 크기만을 FC-NIC으로 전달하면 FC-NIC은 DMA (direct memory access)를 통하여 호스트 메모리를 읽는다. FC 상위 프로토콜과 시퀀스 및 인코딩 디코딩은 FC-NIC의 zynq SoC내의 로컬 프로세서와 프로그램어블 로직이 감당하게 되므로 호스트는 외부 통신에 대한 부하를 해소할 수 있다. 설계 및 제작된 FC-NIC은 2.125 Gbps 전송 속도에서 평균 5.47 us의 낮은 end-to-end 레이턴시 특성을 보였으며, IMA기반의 항공 전자 장비의 네트워크로 사용하는 데 적합함을 알 수 있다.

This paper shows that design, manufacture and the performance of FC-NIC (fibre channel network interface card) for network unit configuration which is based on one of the 5 main configuration items of the common functional module for IMA (integrated modular Avionics) architecture. Especially, FC-NIC uses zynq SoC (system on chip) for host load reductions. The host merely transmit FC destination address, source memory location and size information to the FC-NIC. After then the FC-NIC read the host memory via DMA (direct memory access). FC upper layer protocol and sequence process at local processor and programmable logic of FC-NIC zynq SoC. It enables to free from host load for external communication. The performance of FC-NIC shows average 5.47 us low end-to-end latency at 2.125 Gbps line speed. It represent that FC-NIC is one of good candidate network for IMA.

키워드

참고문헌

  1. Richard L. Alena, Communications for Integrated Modular Avionics, Aerospace Conference, 2007 IEEE, 3-10 March 2007.
  2. Brian Sutterfield, John A. Hoschette, Paul Anton Lockheed Martin MS2 Tactical Systems Eagan, Minnesota FUTURE INTEGRATED MODULAR AVIONICS FOR JET FIGHTER MISSION COMPUTERS
  3. NATO, STANAG No.4626. Draft 1 Modular and Open Avionics Architectures
  4. Joao Craveiro and Jose Rufino Universidade de Lisboa, Faculdade de Ciencias, LaSIGE FCUL, Ed. C6, Piso 3, Campo Grande, 1749-016 Lisbon, Portugal Adaptability Support in Time- and Space-Partitioned Aerospace Systems ADAPTIVE 2010
  5. D. A. Aupers G. J. Heerink S. Willink, Simulation of a Cell Switched Network for the Control of a Switch Matrix in a High-Speed Avionics Network, National Aerospace Lab., Amsterdam (Netherlands). Div. of Electronics and Instrumentation. Conference proceedings, Oct 1996,16p
  6. ASSC, Guide to Digital Interface Standards for Military Avionics applications, ASSC/110/6/2-Issue 3, Sep. 2006.
  7. Brian Sutterfield, John A. Hoschette, Paul Anton, Future Integrated Modular Avionics for JET Fighter Mission Computers, Digital Avionics Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th, Lockheed Martin MS2 Tactical Systems
  8. Jeff Levis, Brian Sutterfield, Rick Stevens, FIBER OPTIC COMMUNICATION WITHIN THE F-35 MISSION SYSTEMS, Avionics Fiber-Optics and Photonics, 2006. IEEE Conference,12-14 Sept. 2006.
  9. The ASAAC Program, Modular Open Avionics Architecture
  10. FIBRE CHANNEL PHYSICAL AND SIGNALLING INTERFACE - 2 (FC-PH-2) Rev 7.4 working draft proposed American National Standard for Information Systems September 10, 1996
  11. Aircraft Systems Mechanical, electrical, and aviconics subsystem integration Third Edition Ian Moir, Allan Seabridge Willy p447-470
  12. STANDARD FOR VITA 42.0 XMC Approved December 2008, ANSI
  13. American National Standard for XMC PCI Express Protocol Layer Standard, ANSI/VITA 42.3-2006
  14. Paper presented at the AGARD MSP Symposium on "Advanced Architectures for Aerospace Mission Systems", held in Istanbul, Turkey, 14-17 October 1996, and published in CP-581. p16-1-16-8