DOI QR코드

DOI QR Code

Effect of Increasing Diffusion Gradient Direction Number on Diffusion Tensor Imaging Fiber Tracking in the Human Brain

  • Yao, Xufeng (School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology) ;
  • Yu, Tonggang (Department of Radiology, Huashan Hospital, Fudan University) ;
  • Liang, Beibei (School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology) ;
  • Xia, Tian (School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology) ;
  • Huang, Qinming (School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology) ;
  • Zhuang, Songlin (School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology)
  • 투고 : 2014.03.18
  • 심사 : 2014.12.15
  • 발행 : 2015.04.01

초록

Objective: To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Materials and Methods: Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. Results: The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). Conclusion: The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (${\geq}11$ orientations) could provide improved tract characteristics at the expense of longer scanning time.

키워드

참고문헌

  1. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637-648 https://doi.org/10.1148/radiology.201.3.8939209
  2. Mori S, van Zijl PC. Fiber tracking: principles and strategies - a technical review. NMR Biomed 2002;15:468-480 https://doi.org/10.1002/nbm.781
  3. Descoteaux M, Deriche R, Knosche TR, Anwander A. Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 2009;28:269-286 https://doi.org/10.1109/TMI.2008.2004424
  4. Berman JI, Mukherjee P, Partridge SC, Miller SP, Ferriero DM, Barkovich AJ, et al. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. Neuroimage 2005;27:862-871 https://doi.org/10.1016/j.neuroimage.2005.05.018
  5. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 2008;29:843-852 https://doi.org/10.3174/ajnr.A1052
  6. Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR. Connectivity-Based Parcellation of Broca's Area. Cereb Cortex 2007;17:816-825
  7. Fillard P, Pennec X, Arsigny V, Ayache N. Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans Med Imaging 2007;26:1472-1482 https://doi.org/10.1109/TMI.2007.899173
  8. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 2006;30:1219-1229 https://doi.org/10.1016/j.neuroimage.2005.11.001
  9. Jeurissen B, Leemans A, Jones DK, Tournier JD, Sijbers J. Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 2011;32:461-479 https://doi.org/10.1002/hbm.21032
  10. Makki MI, Govindan RM, Wilson BJ, Behen ME, Chugani HT. Altered fronto-striato-thalamic connectivity in children with Tourette syndrome assessed with diffusion tensor MRI and probabilistic fiber tracking. J Child Neurol 2009;24:669-678 https://doi.org/10.1177/0883073808327838
  11. Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA, et al. Regional DTI differences in multiple sclerosis patients. Neuroimage 2009;44:1397-1403 https://doi.org/10.1016/j.neuroimage.2008.10.026
  12. Torgerson CM, Irimia A, Leow AD, Bartzokis G, Moody TD, Jennings RG, et al. DTI tractography and white matter fiber tract characteristics in euthymic bipolar I patients and healthy control subjects. Brain Imaging Behav 2013;7:129-139 https://doi.org/10.1007/s11682-012-9202-3
  13. Chahboune H, Mishra AM, DeSalvo MN, Staib LH, Purcaro M, Scheinost D, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy. Neuroimage 2009;47:459-466 https://doi.org/10.1016/j.neuroimage.2009.04.060
  14. Kantarci K, Avula R, Senjem ML, Samikoglu AR, Zhang B, Weigand SD, et al. Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 2010;74:1814-1821 https://doi.org/10.1212/WNL.0b013e3181e0f7cf
  15. Lenglet C, Campbell JS, Descoteaux M, Haro G, Savadjiev P, Wassermann D, et al. Mathematical methods for diffusion MRI processing. Neuroimage 2009;45(1 Suppl):S111-S122 https://doi.org/10.1016/j.neuroimage.2008.10.054
  16. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 2006;27:1776-1781
  17. Bammer R, Holdsworth SJ, Veldhuis WB, Skare ST. New methods in diffusion-weighted and diffusion tensor imaging. Magn Reson Imaging Clin N Am 2009;17:175-204 https://doi.org/10.1016/j.mric.2009.01.011
  18. Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T. Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 2000;18:671-679 https://doi.org/10.1016/S0730-725X(00)00151-X
  19. Zhan L, Leow AD, Jahanshad N, Chiang MC, Barysheva M, Lee AD, et al. How does angular resolution affect diffusion imaging measures? Neuroimage 2010;49:1357-1371 https://doi.org/10.1016/j.neuroimage.2009.09.057
  20. Lebel C, Benner T, Beaulieu C. Six is enough? Comparison of diffusion parameters measured using six or more diffusionencoding gradient directions with deterministic tractography. Magn Reson Med 2012;68:474-483 https://doi.org/10.1002/mrm.23254
  21. Heiervang E, Behrens TE, Mackay CE, Robson MD, Johansen- Berg H. Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 2006;33:867-877 https://doi.org/10.1016/j.neuroimage.2006.07.037
  22. Roberts TP, Liu F, Kassner A, Mori S, Guha A. Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. AJNR Am J Neuroradiol 2005;26:2183-2186
  23. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 2006;81:106-116 https://doi.org/10.1016/j.cmpb.2005.08.004
  24. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001;13:534-546 https://doi.org/10.1002/jmri.1076
  25. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 2004;25:356-369
  26. Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008;39:369-382 https://doi.org/10.1016/j.neuroimage.2007.08.031
  27. Yao X, Wang M, Chen X, Nie S, Li Z, Xu X, et al. Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size. Neural Regen Res 2013;8:1481-1490
  28. Santarelli X, Garbin G, Ukmar M, Longo R. Dependence of the fractional anisotropy in cervical spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson Imaging 2010;28:70-76 https://doi.org/10.1016/j.mri.2009.05.046
  29. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L. White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. Neuroimage 2009;46:600-607 https://doi.org/10.1016/j.neuroimage.2009.02.025
  30. Teipel SJ, Meindl T, Wagner M, Stieltjes B, Reuter S, Hauenstein KH, et al. Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study. J Alzheimers Dis 2010;22:507-522 https://doi.org/10.3233/JAD-2010-100234
  31. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 2008;39:336-347 https://doi.org/10.1016/j.neuroimage.2007.07.053
  32. Kavec M, Sadeghi N, Baleriaux D, Metens T. A Monte Carlo simulation of image misalignment effects in diffusion tensor imaging. Magn Reson Imaging 2010;28:834-841 https://doi.org/10.1016/j.mri.2010.03.030
  33. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, et al. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. Neuroimage 2009;47:618-627 https://doi.org/10.1016/j.neuroimage.2009.04.057
  34. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr. A comprehensive reliability assessment of quantitative diffusion tensor tractography. Neuroimage 2012;60:1127-1138 https://doi.org/10.1016/j.neuroimage.2011.12.062
  35. Anderson AW. Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 2001;46:1174-1188 https://doi.org/10.1002/mrm.1315
  36. Laun FB, Schad LR, Klein J, Stieltjes B. How background noise shifts eigenvectors and increases eigenvalues in DTI. MAGMA 2009;22:151-158 https://doi.org/10.1007/s10334-008-0159-6
  37. Zhang N, Deng ZS, Wang F, Wang XY. The effect of different number of diffusion gradients on SNR of diffusion tensorderived measurement maps. JBiSE 2009;2:96-101 https://doi.org/10.4236/jbise.2009.22018
  38. Peled S, Friman O, Jolesz F, Westin CF. Geometrically constrained two-tensor model for crossing tracts in DWI. Magn Reson Imaging 2006;24:1263-1270 https://doi.org/10.1016/j.mri.2006.07.009
  39. Sotiropoulos SN, Bai L, Morgan PS, Auer DP, Constantinescu CS, Tench CR. A regularized two-tensor model fit to low angular resolution diffusion images using basis directions. J Magn Reson Imaging 2008;28:199-209 https://doi.org/10.1002/jmri.21380

피인용 문헌

  1. Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives vol.17, pp.6, 2015, https://doi.org/10.3348/kjr.2016.17.6.827
  2. A Novel Technique for Region and Linguistic Specific nTMS-based DTI Fiber Tracking of Language Pathways in Brain Tumor Patients vol.10, pp.None, 2016, https://doi.org/10.3389/fnins.2016.00552
  3. Differentiation of the Infarct Core from Ischemic Penumbra within the First 4.5 Hours, Using Diffusion Tensor Imaging-Derived Metrics: A Rat Model vol.18, pp.2, 2017, https://doi.org/10.3348/kjr.2017.18.2.269
  4. The relationship between fractional anisotropy value and tumor microarchitecture in late-stage rat glioma vol.10, pp.6, 2015, https://doi.org/10.1016/j.apjtm.2017.06.011
  5. Diffusion Tensor-Derived Properties of Benign Oligemia, True “at Risk” Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model vol.19, pp.6, 2015, https://doi.org/10.3348/kjr.2018.19.6.1161
  6. Diffusion tensor imaging of the sciatic nerve in Charcot-Marie-Tooth disease type I patients: a prospective case-control study vol.29, pp.6, 2015, https://doi.org/10.1007/s00330-018-5958-1
  7. Assessment of peripheral neuropathy in type 2 diabetes by diffusion tensor imaging: A case-control study vol.145, pp.None, 2021, https://doi.org/10.1016/j.ejrad.2021.110007