DOI QR코드

DOI QR Code

Effects of MR Parameter Changes on the Quantification of Diffusion Anisotropy and Apparent Diffusion Coefficient in Diffusion Tensor Imaging: Evaluation Using a Diffusional Anisotropic Phantom

  • Kim, Sang Joon (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Choi, Choong Gon (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jeong Kon (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yun, Sung-Cheol (Department of Biostatistics, University of Ulsan College of Medicine) ;
  • Jahng, Geon-Ho (Department of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine) ;
  • Jeong, Ha-Kyu (Clinical Scientist, MR, Philips Healthcare) ;
  • Kim, Eun Ju (Clinical Scientist, MR, Philips Healthcare)
  • Received : 2014.03.24
  • Accepted : 2014.12.26
  • Published : 2015.04.01

Abstract

Objective: To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Materials and Methods: Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. Results: The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. Conclusion: A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

Keywords

References

  1. Dong Q, Welsh RC, Chenevert TL, Carlos RC, Maly-Sundgren P, Gomez-Hassan DM, et al. Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 2004;19:6-18 https://doi.org/10.1002/jmri.10424
  2. Landman BA, Farrell JA, Jones CK, Smith SA, Prince JL, Mori S. Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. Neuroimage 2007;36:1123-1138 https://doi.org/10.1016/j.neuroimage.2007.02.056
  3. Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, et al. Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 2006;16:1651-1658 https://doi.org/10.1007/s00330-006-0175-8
  4. Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, et al. Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. Neuroimage 2011;56:1398-1411 https://doi.org/10.1016/j.neuroimage.2011.02.010
  5. Melhem ER, Itoh R, Jones L, Barker PB. Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am J Neuroradiol 2000;21:1813-1820
  6. Qin W, Yu CS, Zhang F, Du XY, Jiang H, Yan YX, et al. Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn Reson Med 2009;61:755-760 https://doi.org/10.1002/mrm.21920
  7. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. AJNR Am J Neuroradiol 2006;27:1776-1781
  8. Widjaja E, Mahmoodabadi SZ, Rea D, Moineddin R, Vidarsson L, Nilsson D. Effects of gradient encoding and number of signal averages on fractional anisotropy and fiber density index in vivo at 1.5 tesla. Acta Radiol 2009;50:106-113 https://doi.org/10.1080/02841850802555646
  9. Santarelli X, Garbin G, Ukmar M, Longo R. Dependence of the fractional anisotropy in cervical spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson Imaging 2010;28:70-76 https://doi.org/10.1016/j.mri.2009.05.046
  10. Boujraf S, Luypaert R, Eisendrath H, Osteaux M. Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems. MAGMA 2001;13:82-90 https://doi.org/10.1007/BF02668156
  11. Chen B, Song AW. Diffusion tensor imaging fiber tracking with local tissue property sensitivity: phantom and in vivo validation. Magn Reson Imaging 2008;26:103-108 https://doi.org/10.1016/j.mri.2007.05.003
  12. Fieremans E, De Deene Y, Delputte S, Ozdemir MS, D'Asseler Y, Vlassenbroeck J, et al. Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J Magn Reson 2008;190:189-199 https://doi.org/10.1016/j.jmr.2007.10.014
  13. Mattila S, Renvall V, Hiltunen J, Kirven D, Sepponen R, Hari R, et al. Phantom-based evaluation of geometric distortions in functional magnetic resonance and diffusion tensor imaging. Magn Reson Med 2007;57:754-763 https://doi.org/10.1002/mrm.21218
  14. Sadleir RJ, Neralwala F, Te T, Tucker A. A controllably anisotropic conductivity or diffusion phantom constructed from isotropic layers. Ann Biomed Eng 2009;37:2522-2531 https://doi.org/10.1007/s10439-009-9799-6
  15. Sakai K, Azuma T, Mori S. Rigid diffusion phantom: acquisition and simulation. Conf Proc IEEE Eng Med Biol Soc 2008;2008:451-453
  16. Watanabe M, Aoki S, Masutani Y, Abe O, Hayashi N, Masumoto T, et al. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner. Radiat Med 2006;24:605-609 https://doi.org/10.1007/s11604-006-0076-4
  17. Yanasak N, Allison J. Use of capillaries in the construction of an MRI phantom for the assessment of diffusion tensor imaging: demonstration of performance. Magn Reson Imaging 2006;24:1349-1361 https://doi.org/10.1016/j.mri.2006.08.001
  18. Poupon C, Rieul B, Kezele I, Perrin M, Poupon F, Mangin JF. New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn Reson Med 2008;60:1276-1283 https://doi.org/10.1002/mrm.21789
  19. Neher PF, Laun FB, Stieltjes B, Maier-Hein KH. Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn Reson Med 2014;72:1460-1470 https://doi.org/10.1002/mrm.25045
  20. Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, et al. Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 2011;56:220-234 https://doi.org/10.1016/j.neuroimage.2011.01.032
  21. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965;42:288-292 https://doi.org/10.1063/1.1695690
  22. Li C, Chen W, Beatty P, Brau A, Hargreaves B, Busse R, et al. SNR quantification with phased-array coils and parallel imaging for 3D-FSE. Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, 2010:(abstract 552)
  23. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995;34:910-914 https://doi.org/10.1002/mrm.1910340618
  24. Giannelli M, Cosottini M, Michelassi MC, Lazzarotti G, Belmonte G, Bartolozzi C, et al. Dependence of brain DTI maps of fractional anisotropy and mean diffusivity on the number of diffusion weighting directions. J Appl Clin Med Phys 2009;11:2927
  25. Alexander AL, Lee JE, Wu YC, Field AS. Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. Neuroimaging Clin N Am 2006;16:299-309, xi https://doi.org/10.1016/j.nic.2006.02.006
  26. Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 2004;52:979-993 https://doi.org/10.1002/mrm.20283
  27. Bisdas S, Bohning DE, Besenski N, Nicholas JS, Rumboldt Z. Reproducibility, interrater agreement, and age-related changes of fractional anisotropy measures at 3 T in healthy subjects: effect of the applied b-value. AJNR Am J Neuroradiol 2008;29:1128-1133 https://doi.org/10.3174/ajnr.A1044
  28. DeLano MC, Cooper TG, Siebert JE, Potchen MJ, Kuppusamy K. High-b-value diffusion-weighted MR imaging of adult brain: image contrast and apparent diffusion coefficient map features. AJNR Am J Neuroradiol 2000;21:1830-1836
  29. Vestergaard-Poulsen P, Hansen B, Ostergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging 2007;26:529-540 https://doi.org/10.1002/jmri.21030
  30. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imagingderived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging 2007;26:756-767 https://doi.org/10.1002/jmri.21053
  31. Zhan L, Leow AD, Jahanshad N, Chiang MC, Barysheva M, Lee AD, et al. How does angular resolution affect diffusion imaging measures? Neuroimage 2010;49:1357-1371 https://doi.org/10.1016/j.neuroimage.2009.09.057
  32. Ogura A, Hayakawa K, Miyati T, Maeda F. Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur J Radiol 2011;77:185-188 https://doi.org/10.1016/j.ejrad.2009.06.031

Cited by

  1. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know vol.17, pp.5, 2015, https://doi.org/10.3348/kjr.2016.17.5.598
  2. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats vol.17, pp.5, 2015, https://doi.org/10.3348/kjr.2016.17.5.715
  3. Structural MR Imaging in the Diagnosis of Alzheimer's Disease and Other Neurodegenerative Dementia: Current Imaging Approach and Future Perspectives vol.17, pp.6, 2015, https://doi.org/10.3348/kjr.2016.17.6.827
  4. Differentiation of the Infarct Core from Ischemic Penumbra within the First 4.5 Hours, Using Diffusion Tensor Imaging-Derived Metrics: A Rat Model vol.18, pp.2, 2017, https://doi.org/10.3348/kjr.2017.18.2.269
  5. Design and Validation of Diffusion MRI Models of White Matter vol.5, pp.None, 2015, https://doi.org/10.3389/fphy.2017.00061
  6. Technical Note: A safe, cheap, and easy-to-use isotropic diffusion MRI phantom for clinical and multicenter studies vol.44, pp.3, 2015, https://doi.org/10.1002/mp.12101
  7. The relationship between fractional anisotropy value and tumor microarchitecture in late-stage rat glioma vol.10, pp.6, 2015, https://doi.org/10.1016/j.apjtm.2017.06.011
  8. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  9. Investigation of anisotropic fishing line-based phantom as tool in quality control of diffusion tensor imaging vol.12, pp.2, 2015, https://doi.org/10.1007/s12194-019-00507-9
  10. 확산텐서영상 팬텀 제작을 위한 식물섬유 재료의 특성에 관한 연구 vol.43, pp.6, 2020, https://doi.org/10.17946/jrst.2020.43.6.475
  11. Determination of optimum pixel size and slice thickness for tractography and ulnar nerve diffusion tensor imaging at the cubital tunnel using 3T MRI vol.62, pp.8, 2015, https://doi.org/10.1177/0284185120951965