DOI QR코드

DOI QR Code

Role of C-Arm Cone-Beam CT in Chemoembolization for Hepatocellular Carcinoma

  • Kim, Hyo-Cheol (Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, and Clinical Research Institute, Seoul National University Hospital)
  • Received : 2014.05.26
  • Accepted : 2014.10.09
  • Published : 2015.02.01

Abstract

With the advent of C-arm cone-beam computed tomography (CBCT), minimally-invasive procedures in the angiography suite made a new leap beyond the limitations of 2-dimensional (D) angiography alone. C-arm CBCT can help interventional radiologists in several ways with the treatment of hepatocellular carcinoma (HCC); visualization of small tumors and tumor-feeding arteries, identification of occult lesion and 3D configuration of tortuous hepatic arteries, assurance of completeness of chemoembolization, suggestion of presence of extrahepatic collateral arteries supplying HCCs, and prevention of nontarget embolization. With more improvements in the technology, C-arm CBCT may be essential in all kinds of interventional procedures in the near future.

Keywords

References

  1. Shin SW. The current practice of transarterial chemoembolization for the treatment of hepatocellular carcinoma. Korean J Radiol 2009;10:425-434 https://doi.org/10.3348/kjr.2009.10.5.425
  2. Cheung JY, Kim Y, Shim SS, Lim SM. Combined fluoroscopy-and CT-guided transthoracic needle biopsy using a C-arm cone-beam CT system: comparison with fluoroscopy-guided biopsy. Korean J Radiol 2011;12:89-96 https://doi.org/10.3348/kjr.2011.12.1.89
  3. Georgiades CS, Hong K, Geschwind JF, Liddell R, Syed L, Kharlip J, et al. Adjunctive use of C-arm CT may eliminate technical failure in adrenal vein sampling. J Vasc Interv Radiol 2007;18:1102-1105 https://doi.org/10.1016/j.jvir.2007.06.018
  4. Kakeda S, Korogi Y, Ohnari N, Moriya J, Oda N, Nishino K, et al. Usefulness of cone-beam volume CT with flat panel detectors in conjunction with catheter angiography for transcatheter arterial embolization. J Vasc Interv Radiol 2007;18:1508-1516 https://doi.org/10.1016/j.jvir.2007.08.003
  5. Collins J, Salem R. Hepatic radioembolization complicated by gastrointestinal ulceration. Semin Intervent Radiol 2011;28:240-245 https://doi.org/10.1055/s-0031-1280673
  6. Orth RC, Wallace MJ, Kuo MD; Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 2008;19:814-820 https://doi.org/10.1016/j.jvir.2008.02.002
  7. Tognolini A, Louie JD, Hwang GL, Hofmann LV, Sze DY, Kothary N. Utility of C-arm CT in patients with hepatocellular carcinoma undergoing transhepatic arterial chemoembolization. J Vasc Interv Radiol 2010;21:339-347 https://doi.org/10.1016/j.jvir.2009.11.007
  8. Wallace MJ, Kuo MD, Glaiberman C, Binkert CA, Orth RC, Soulez G, et al. Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 2008;19:799-813 https://doi.org/10.1016/j.jvir.2008.02.018
  9. Koelblinger C, Schima W, Berger-Kulemann V, Wolf F, Plank C, Weber M, et al. C-arm CT during hepatic arteriography tumour-to-liver contrast: intraindividual comparison of three different contrast media application protocols. Eur Radiol 2013;23:938-942 https://doi.org/10.1007/s00330-012-2697-6
  10. Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Nakashima Y, Ikeno H, et al. Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Intervent Radiol 2011;34:81-86 https://doi.org/10.1007/s00270-010-9835-9
  11. Loffroy R, Lin M, Yenokyan G, Rao PP, Bhagat N, Noordhoek N, et al. Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology 2013;266:636-648 https://doi.org/10.1148/radiol.12112316
  12. Higashihara H, Osuga K, Onishi H, Nakamoto A, Tsuboyama T, Maeda N, et al. Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT. Eur Radiol 2012;22:872-879 https://doi.org/10.1007/s00330-011-2324-y
  13. Meyer BC, Frericks BB, Voges M, Borchert M, Martus P, Justiz J, et al. Visualization of hypervascular liver lesions During TACE: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol 2008;190:W263-W269 https://doi.org/10.2214/AJR.07.2695
  14. Iwazawa J, Ohue S, Hashimoto N, Abe H, Hamuro M, Mitani T. Detection of hepatocellular carcinoma: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol 2010;195:882-887 https://doi.org/10.2214/AJR.10.4417
  15. Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Sugimori N, Igarashi S, et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Intervent Radiol 2009;32:255-264 https://doi.org/10.1007/s00270-008-9468-4
  16. Loffroy R, Lin M, Rao P, Bhagat N, Noordhoek N, Radaelli A, et al. Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Intervent Radiol 2012;35:97-104 https://doi.org/10.1007/s00270-011-0118-x
  17. Onishi H, Kim T, Imai Y, Hori M, Nagano H, Nakaya Y, et al. Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MR imaging and multiphasic multidetector CT. Eur Radiol 2012;22:845-854 https://doi.org/10.1007/s00330-011-2316-y
  18. Yu MH, Kim JH, Yoon JH, Kim HC, Chung JW, Han JK, et al. Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 2013;201:675-683 https://doi.org/10.2214/AJR.12.10445
  19. Meyer BC, Witschel M, Frericks BB, Voges M, Hopfenmuller W, Wolf KJ, et al. The value of combined soft-tissue and vessel visualisation before transarterial chemoembolisation of the liver using C-arm computed tomography. Eur Radiol 2009;19:2302-2309 https://doi.org/10.1007/s00330-009-1410-x
  20. Iwazawa J, Ohue S, Mitani T, Abe H, Hashimoto N, Hamuro M, et al. Identifying feeding arteries during TACE of hepatic tumors: comparison of C-arm CT and digital subtraction angiography. AJR Am J Roentgenol 2009;192:1057-1063 https://doi.org/10.2214/AJR.08.1285
  21. Choi WS, Kim HC, Hur S, Choi JW, Lee JH, Yu SJ, et al. Role of C-arm CT in identifying caudate arteries supplying hepatocellular carcinoma. J Vasc Interv Radiol 2014;25:1380-1388 https://doi.org/10.1016/j.jvir.2014.02.028
  22. Wang X, Shah RP, Maybody M, Brown KT, Getrajdman GI, Stevenson C, et al. Cystic artery localization with a three-dimensional angiography vessel tracking system compared with conventional two-dimensional angiography. J Vasc Interv Radiol 2011;22:1414-1419 https://doi.org/10.1016/j.jvir.2011.02.022
  23. Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol 2010;33:1235-1242 https://doi.org/10.1007/s00270-010-9846-6
  24. Miyayama S, Yamashiro M, Ikuno M, Okumura K, Yoshida M. Ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinoma guided by automated tumor-feeders detection software: technical success and short-term tumor response. Abdom Imaging 2014;39:645-656 https://doi.org/10.1007/s00261-014-0094-0
  25. Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol 2013;24:501-508 https://doi.org/10.1016/j.jvir.2012.12.022
  26. Iwazawa J, Ohue S, Hashimoto N, Muramoto O, Mitani T. Clinical utility and limitations of tumor-feeder detection software for liver cancer embolization. Eur J Radiol 2013;82:1665-1671 https://doi.org/10.1016/j.ejrad.2013.05.006
  27. Song SY, Chung JW, Lim HG, Park JH. Nonhepatic arteries originating from the hepatic arteries: angiographic analysis in 250 patients. J Vasc Interv Radiol 2006;17:461-469 https://doi.org/10.1097/01.RVI.0000202718.16416.18
  28. Kim HC, Chung JW, Park JH, An S, Son KR, Seong NJ, et al. Transcatheter arterial chemoembolization for hepatocellular carcinoma: prospective assessment of the right inferior phrenic artery with C-arm CT. J Vasc Interv Radiol 2009;20:888-895 https://doi.org/10.1016/j.jvir.2009.03.036
  29. Kim HC, Chung JW, An S, Seong NJ, Jae HJ, Cho BH, et al. Left inferior phrenic artery feeding hepatocellular carcinoma: angiographic anatomy using C-arm CT. AJR Am J Roentgenol 2009;193:W288-W294 https://doi.org/10.2214/AJR.09.2417
  30. Kim HC, Chung JW, Lee IJ, An S, Seong NJ, Son KR, et al. Intercostal artery supplying hepatocellular carcinoma: demonstration of a tumor feeder by C-arm CT and multidetector row CT. Cardiovasc Intervent Radiol 2011;34:87-91 https://doi.org/10.1007/s00270-010-9883-1
  31. Kim HC, Chung JW, Lee W, Jae HJ, Park JH. Recognizing extrahepatic collateral vessels that supply hepatocellular carcinoma to avoid complications of transcatheter arterial chemoembolization. Radiographics 2005;25 Suppl 1:S25-S39 https://doi.org/10.1148/rg.25si055508
  32. Iwazawa J, Ohue S, Kitayama T, Sassa S, Mitani T. C-arm CT for assessing initial failure of iodized oil accumulation in chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 2011;197:W337-W342 https://doi.org/10.2214/AJR.10.5614
  33. Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Comparison of local control in transcatheter arterial chemoembolization of hepatocellular carcinoma ${\leq}$ 6 cm with or without intraprocedural monitoring of the embolized area using cone-beam computed tomography. Cardiovasc Intervent Radiol 2014;37:388-395 https://doi.org/10.1007/s00270-013-0667-2
  34. Suk Oh J, Jong Chun H, Gil Choi B, Giu Lee H. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol 2013;24:483-489 https://doi.org/10.1016/j.jvir.2013.01.001
  35. Virmani S, Ryu RK, Sato KT, Lewandowski RJ, Kulik L, Mulcahy MF, et al. Effect of C-arm angiographic CT on transcatheter arterial chemoembolization of liver tumors. J Vasc Interv Radiol 2007;18:1305-1309 https://doi.org/10.1016/j.jvir.2007.07.006
  36. Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J, et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol 2007;18:1500-1507 https://doi.org/10.1016/j.jvir.2007.07.021
  37. Iwazawa J, Ohue S, Hashimoto N, Muramoto O, Mitani T. Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma. Eur J Radiol 2012;81:3985-3992 https://doi.org/10.1016/j.ejrad.2012.08.012
  38. Kothary N, Abdelmaksoud MH, Tognolini A, Fahrig R, Rosenberg J, Hovsepian DM, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol 2011;22:1535-1543 https://doi.org/10.1016/j.jvir.2011.07.008
  39. Lee IJ, Chung JW, Yin YH, Kim HC, Kim YI, Jae HJ, et al. Cone-beam CT hepatic arteriography in chemoembolization for hepatocellular carcinoma: angiographic image quality and its determining factors. J Vasc Interv Radiol 2014;25:1369-1379; quiz 1379-1379.e1 https://doi.org/10.1016/j.jvir.2014.04.011

Cited by

  1. Does Establishing a Safety Margin Reduce Local Recurrence in Subsegmental Transarterial Chemoembolization for Small Nodular Hepatocellular Carcinomas? vol.16, pp.5, 2015, https://doi.org/10.3348/kjr.2015.16.5.1068
  2. Optimized Performance of FlightPlan during Chemoembolization for Hepatocellular Carcinoma: Importance of the Proportion of Segmented Tumor Area vol.17, pp.5, 2015, https://doi.org/10.3348/kjr.2016.17.5.771
  3. Cone-beam computed tomography with automated bone subtraction in preoperative embolization for pelvic bone tumors vol.12, pp.4, 2015, https://doi.org/10.1371/journal.pone.0175907
  4. A Systematic Review and Meta-Analysis of C-Arm Cone-Beam CT-Guided Percutaneous Transthoracic Needle Biopsy of Lung Nodules vol.82, pp.None, 2017, https://doi.org/10.12659/pjr.899626
  5. Optimizing the target detectability of cone beam CT performed in image‐guided radiation therapy for patients of different body sizes vol.19, pp.3, 2015, https://doi.org/10.1002/acm2.12306
  6. Imaging Evaluation Following 90 Y Radioembolization of Liver Tumors: What Radiologists Should Know vol.19, pp.2, 2015, https://doi.org/10.3348/kjr.2018.19.2.209
  7. Detection of Recurrent/Residual Hepatocellular Carcinoma: Single-Center Retrospective Comparative Study Between Parenchymal Blood Volume Mapping Using Cone Beam CT and Multiphase Dynamic CT vol.79, pp.2, 2015, https://doi.org/10.3348/jksr.2018.79.2.68
  8. Bench-to-clinic development of imageable drug-eluting embolization beads: finding the balance vol.14, pp.26, 2015, https://doi.org/10.2217/fon-2018-0196
  9. Selective Chemoembolization of Caudate Lobe Hepatocellular Carcinoma: Anatomy and Procedural Techniques vol.39, pp.1, 2015, https://doi.org/10.1148/rg.2019180110
  10. Update on Transarterial Chemoembolization with Drug-Eluting Microspheres for Hepatocellular Carcinoma vol.20, pp.1, 2015, https://doi.org/10.3348/kjr.2018.0088
  11. Conventional Chemoembolization for Hepatocellular Carcinoma: Role of Cone-Beam Computed Tomography Guidance vol.19, pp.1, 2019, https://doi.org/10.17998/jlc.19.1.19
  12. Efficacy and safety of transarterial chemoembolisation with cone-beam CT in patients with hepatocellular carcinoma within the Milan criteria: a retrospective cohort study vol.74, pp.5, 2015, https://doi.org/10.1016/j.crad.2019.01.024
  13. Clinical impact of a new cone beam CT angiography respiratory motion artifact reduction algorithm during hepatic intra-arterial interventions vol.30, pp.1, 2020, https://doi.org/10.1007/s00330-019-06355-w
  14. Role of Cone-Beam CT in the Intraprocedural Evaluation of Chemoembolization of Hepatocellular Carcinoma vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/8856998