DOI QR코드

DOI QR Code

Practical Application of Coronary Imaging Devices in Cardiovascular Intervention

  • Cho, Yun-Kyeong (Department of Internal Medicine, Keimyung University Dongsan Hospital) ;
  • Hur, Seung-Ho (Department of Internal Medicine, Keimyung University Dongsan Hospital)
  • Received : 2014.07.03
  • Accepted : 2014.11.26
  • Published : 2015.03.30

Abstract

The significant morbidity and mortality associated with coronary artery disease has spurred the development of intravascular imaging devices to optimize the detection and assessment of coronary lesions and percutaneous coronary interventions. Intravascular ultrasound (IVUS) uses reflected ultrasound waves to quantitatively and qualitatively assess lesions; integrated backscatter and virtual histology IVUS more precisely characterizes plaque composition; angioscopy directly visualize thrombus and plaque; optical coherence tomography using near-infrared (NIR) light with very high spatial resolution provides more accurate images; and the recently introduced NIR spectroscopy identifies chemical components in coronary artery plaques based on differential light absorption in the NIR spectrum. This article reviews usefulness of these devices and hybrids thereof.

Keywords

References

  1. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:480-6. https://doi.org/10.1161/CIRCULATIONAHA.108.191259
  2. Arnett EN, Isner JM, Redwood DR, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med 1979;91:350-6. https://doi.org/10.7326/0003-4819-91-3-350
  3. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819-24. https://doi.org/10.1056/NEJM198403293101304
  4. Hodgson JM, Graham SP, Savakus AD, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging 1989;4:187-93. https://doi.org/10.1007/BF01745149
  5. Lee SY, Mintz GS, Kim SY, et al. Attenuated plaque detected by intravascular ultrasound: clinical, angiographic, and morphologic features and post-percutaneous coronary intervention complications in patients with acute coronary syndromes. JACC Cardiovasc Interv 2009;2:65-72.
  6. Potkin BN, Keren G, Mintz GS, et al. Arterial responses to balloon coronary angioplasty: an intravascular ultrasound study. J Am Coll Cardiol 1992;20:942-51. https://doi.org/10.1016/0735-1097(92)90197-U
  7. Tang Z, Bai J, Su SP, et al. Cutting-balloon angioplasty before drugeluting stent implantation for the treatment of severely calcified coronary lesions. J Geriatr Cardiol 2014;11:44-9.
  8. Mintz GS, Pichard AD, Popma JJ, Kent KM, Satler LF, Leon MB. Preliminary experience with adjunct directional coronary atherectomy after high-speed rotational atherectomy in the treatment of calcific coronary artery disease. Am J Cardiol 1993;71:799-804. https://doi.org/10.1016/0002-9149(93)90827-Y
  9. Parise H, Maehara A, Stone GW, Leon MB, Mintz GS. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drugeluting stent era. Am J Cardiol 2011;107:374-82. https://doi.org/10.1016/j.amjcard.2010.09.030
  10. Ahn JM, Kang SJ, Yoon SH, et al. Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol 2014;113:1338-47. https://doi.org/10.1016/j.amjcard.2013.12.043
  11. Jang JS, Song YJ, Kang W, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv 2014;7:233-43.
  12. de Jaegere P, Mudra H, Figulla H, et al. Intravascular ultrasound-guided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J 1998;19:1214-23. https://doi.org/10.1053/euhj.1998.1012
  13. Zhang Y, Farooq V, Garcia-Garcia HM, et al. Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients. EuroIntervention 2012;8:855-65. https://doi.org/10.4244/EIJV8I7A129
  14. Kawasaki M, Takatsu H, Noda T, et al. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol 2001;38:486-92. https://doi.org/10.1016/S0735-1097(01)01393-6
  15. Kawasaki M, Takatsu H, Noda T, et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 2002;105:2487-92. https://doi.org/10.1161/01.CIR.0000017200.47342.10
  16. Rodriguez-Granillo GA, Bruining N, Mc Fadden E, et al. Geometrical validation of intravascular ultrasound radiofrequency data analysis (Virtual Histology) acquired with a 30 MHz boston scientific corporation imaging catheter. Catheter Cardiovasc Interv 2005;66:514-8. https://doi.org/10.1002/ccd.20447
  17. Nasu K, Tsuchikane E, Katoh O, et al. Impact of intramural thrombus in coronary arteries on the accuracy of tissue characterization by in vivo intravascular ultrasound radiofrequency data analysis. Am J Cardiol 2008;101:1079-83. https://doi.org/10.1016/j.amjcard.2007.11.064
  18. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35. https://doi.org/10.1056/NEJMoa1002358
  19. Claessen BE, Maehara A, Fahy M, Xu K, Stone GW, Mintz GS. Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention. JACC Cardiovasc Imaging 2012;5(3 Suppl):S111-8. https://doi.org/10.1016/j.jcmg.2011.11.018
  20. Wu X, Maehara A, Mintz GS, et al. Virtual histology intravascular ultrasound analysis of non-culprit attenuated plaques detected by grayscale intravascular ultrasound in patients with acute coronary syndromes. Am J Cardiol 2010;105:48-53. https://doi.org/10.1016/j.amjcard.2009.08.649
  21. Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 2005;46:2038-42. https://doi.org/10.1016/j.jacc.2005.07.064
  22. Uchida Y. Recent advances in coronary angioscopy. J Cardiol 2011;57:18-30. https://doi.org/10.1016/j.jjcc.2010.11.001
  23. Takano M, Mizuno K. Coronary angioscopic evaluation for serial changes of luminal appearance after pharmacological and catheter interventions. Circ J 2010;74:240-5. https://doi.org/10.1253/circj.CJ-09-0769
  24. Kotani J, Awata M, Nanto S, et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol 2006;47:2108-11. https://doi.org/10.1016/j.jacc.2005.11.092
  25. Alfonso F. The "vulnerable" stent why so dreadful? J Am Coll Cardiol 2008;51:2403-6. https://doi.org/10.1016/j.jacc.2008.03.029
  26. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640-5. https://doi.org/10.1161/01.CIR.0000029927.92825.F6
  27. Takarada S, Imanishi T, Liu Y, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter Cardiovasc Interv 2010;75:202-6. https://doi.org/10.1002/ccd.22273
  28. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 2007;50:933-9. https://doi.org/10.1016/j.jacc.2007.04.082
  29. Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging 2013;6:1095-104. https://doi.org/10.1016/j.jcmg.2013.04.014
  30. Gonzalo N, Escaned J, Alfonso F, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol 2012;59:1080-9. https://doi.org/10.1016/j.jacc.2011.09.078
  31. Kubo T, Imanishi T, Kitabata H, et al. Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. JACC Cardiovasc Imaging 2008;1:475-84. https://doi.org/10.1016/j.jcmg.2008.03.012
  32. Gutierrez-Chico JL, Wykrzykowska J, Nuesch E, et al. Vascular tissue reaction to acute malapposition in human coronary arteries: sequential assessment with optical coherence tomography. Circ Cardiovasc Interv 2012;5:20-9, S1-8. https://doi.org/10.1161/CIRCINTERVENTIONS.111.965301
  33. Im E, Kim BK, Ko YG, et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. Circ Cardiovasc Interv 2014;7:88-96. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000797
  34. Ino Y, Kubo T, Kitabata H, et al. Difference in neointimal appearance between early and late restenosis after sirolimus-eluting stent implantation assessed by optical coherence tomography. Coron Artery Dis 2013;24:95-101. https://doi.org/10.1097/MCA.0b013e32835c872b
  35. Kang SJ, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in-stent neoatherosclerosis after drug-eluting stent implantation. Circulation 2011;123:2954-63. https://doi.org/10.1161/CIRCULATIONAHA.110.988436
  36. Vergallo R, Yonetsu T, Uemura S, et al. Correlation between degree of neointimal hyperplasia and incidence and characteristics of neoatherosclerosis as assessed by optical coherence tomography. Am J Cardiol 2013;112:1315-21. https://doi.org/10.1016/j.amjcard.2013.05.076
  37. Rath PC, Reddy K, Agarwal MK, Purohit BV, Deb T, Reddy AM. Optical coherence tomography guided PCI - initial experience at Apollo Health City, Jubilee Hills, Hyderabad. Indian Heart J 2014;66:31-7. https://doi.org/10.1016/j.ihj.2013.12.048
  38. Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 2012;8:823-9. https://doi.org/10.4244/EIJV8I7A125
  39. Habara M, Nasu K, Terashima M, et al. Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance. Circ Cardiovasc Interv 2012;5:193-201. https://doi.org/10.1161/CIRCINTERVENTIONS.111.965111
  40. Kim IC, Hur SH, Cho YK, et al. Impact of optical coherence tomography-versus intravascular ultrasound-guided percutaneous coronary intervention on mid-term clinical outcomes. Eur Heart J 2014;35(suppl 1):1141.
  41. Cervinka P, Spacek R, Bystron M, et al. Optical coherence tomographyguided primary percutaneous coronary intervention in ST-segment elevation myocardial infarction patients: a pilot study. Can J Cardiol 2014;30:420-7. https://doi.org/10.1016/j.cjca.2013.12.016
  42. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O'Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002;105:923-7. https://doi.org/10.1161/hc0802.104291
  43. Madder RD, Smith JL, Dixon SR, Goldstein JA. Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv 2012;5:55-61. https://doi.org/10.1161/CIRCINTERVENTIONS.111.963934
  44. Waxman S, Dixon SR, L'Allier P, et al. In vivo validation of a catheterbased near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2009;2:858-68. https://doi.org/10.1016/j.jcmg.2009.05.001
  45. Choi BJ, Prasad A, Gulati R, et al. Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J 2013;34:2047-54. https://doi.org/10.1093/eurheartj/eht132
  46. Dixon SR, Grines CL, Munir A, et al. Analysis of target lesion length before coronary artery stenting using angiography and near-infrared spectroscopy versus angiography alone. Am J Cardiol 2012;109:60-6. https://doi.org/10.1016/j.amjcard.2011.07.068
  47. Bourantas CV, Kourtis IC, Plissiti ME, et al. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Comput Med Imaging Graph 2005;29:597-606. https://doi.org/10.1016/j.compmedimag.2005.07.001
  48. Pu J, Mintz GS, Brilakis ES, et al. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J 2012;33:372-83. https://doi.org/10.1093/eurheartj/ehr387
  49. Schiele F, Meneveau N, Seronde MF, et al. Medical costs of intravascular ultrasound optimization of stent deployment. Results of the multicenter randomized 'REStenosis after Intravascular ultrasound STenting' (RESIST) study. Int J Cardiovasc Intervent 2000;3:207-13. https://doi.org/10.1080/14628840050515957
  50. Frey AW, Hodgson JM, Müller C, Bestehorn HP, Roskamm H. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter: results from the randomized Strategy for Intracoronary Ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation 2000;102:2497-502. https://doi.org/10.1161/01.CIR.102.20.2497
  51. Mudra H, di Mario C, de Jaegere P, et al. Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUS Study). Circulation 2001;104:1343-9. https://doi.org/10.1161/hc3701.096064
  52. Oemrawsingh PV, Mintz GS, Schalij MJ, et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation 2003;107:62-7. https://doi.org/10.1161/01.CIR.0000043240.87526.3F
  53. Gaster AL, Slothuus Skjoldborg U, Larsen J, et al. Continued improvement of clinical outcome and cost effectiveness following intravascular ultrasound guided PCI: insights from a prospective, randomised study. Heart 2003;89:1043-9. https://doi.org/10.1136/heart.89.9.1043
  54. Gil RJ, Pawlowski T, Dudek D, et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am Heart J 2007;154:669-75. https://doi.org/10.1016/j.ahj.2007.06.017
  55. Russo RJ, Silva PD, Teirstein PS, et al. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (the AVID Trial). Circ Cardiovasc Interv 2009;2:113-23. https://doi.org/10.1161/CIRCINTERVENTIONS.108.778647
  56. Roy P, Steinberg DH, Sushinsky SJ, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J 2008;29:1851-7. https://doi.org/10.1093/eurheartj/ehn249
  57. Park SJ, Kim YH, Park DW, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv 2009;2:167-77. https://doi.org/10.1161/CIRCINTERVENTIONS.108.799494
  58. Jakabcin J, Spacek R, Bystron M, et al. Long-term health outcome and mortality evaluation after invasive coronary treatment using drug eluting stents with or without the IVUS guidance. Randomized control trial. HOME DES IVUS. Catheter Cardiovasc Interv 2010;75:578-83. https://doi.org/10.1002/ccd.22244
  59. Claessen BE, Mehran R, Mintz GS, et al. Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC Cardiovasc Interv 2011;4:974-81. https://doi.org/10.1016/j.jcin.2011.07.005
  60. Kim JS, Hong MK, Ko YG, et al. Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry. Am Heart J 2011;161:180-7. https://doi.org/10.1016/j.ahj.2010.10.002
  61. Youn YJ, Yoon J, Lee JW, et al. Intravascular ultrasound-guided primary percutaneous coronary intervention with drug-eluting stent implantation in patients with ST-segment elevation myocardial infarction. Clin Cardiol 2011;34:706-13. https://doi.org/10.1002/clc.20966
  62. Park KW, Kang SH, Yang HM, et al. Impact of intravascular ultrasound guidance in routine percutaneous coronary intervention for conventional lesions: data from the EXCELLENT trial. Int J Cardiol 2013;167:721-6. https://doi.org/10.1016/j.ijcard.2012.03.059
  63. Ahn SG, Yoon J, Sung JK, et al. Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stents implantation. Korean Circ J 2013;43:231-8. https://doi.org/10.4070/kcj.2013.43.4.231
  64. Ahn JM, Han S, Park YK, et al. Differential prognostic effect of intravascular ultrasound use according to implanted stent length. Am J Cardiol 2013;111:829-35. https://doi.org/10.1016/j.amjcard.2012.11.054
  65. Chen SL, Ye F, Zhang JJ, et al. Intravascular ultrasound-guided systematic two-stent techniques for coronary bifurcation lesions and reduced late stent thrombosis. Catheter Cardiovasc Interv 2013;81:456-63. https://doi.org/10.1002/ccd.24601
  66. Chieffo A, Latib A, Caussin C, et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J 2013;165:65-72. https://doi.org/10.1016/j.ahj.2012.09.017
  67. Hur SH, Kang SJ, Kim YH, et al. Impact of intravascular ultrasoundguided percutaneous coronary intervention on long-term clinical outcomes in a real world population. Catheter Cardiovasc Interv 2013;81:407-16. https://doi.org/10.1002/ccd.23279
  68. Kim JS, Kang TS, Mintz GS, et al. Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses. JACC Cardiovasc Interv 2013;6:369-76. https://doi.org/10.1016/j.jcin.2012.11.009
  69. Witzenbichler B, Maehara A, Weisz G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drugeluting stents: the assessment of dual antiplatelet therapy with drugeluting stents (ADAPT-DES) study. Circulation 2014;129:463-70. https://doi.org/10.1161/CIRCULATIONAHA.113.003942
  70. Shiono Y, Kitabata H, Kubo T, et al. Optical coherence tomographyderived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J 2012;76:2218-25. https://doi.org/10.1253/circj.CJ-12-0195
  71. Pyxaras SA, Tu S, Barbato E, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve. Am Heart J 2013;166:1010-8. https://doi.org/10.1016/j.ahj.2013.08.016
  72. Pawlowski T, Prati F, Kulawik T, Ficarra E, Bil J, Gil R. Optical coherence tomography criteria for defining functional severity of intermediate lesions: a comparative study with FFR. Int J Cardiovasc Imaging 2013;29:1685-91. https://doi.org/10.1007/s10554-013-0283-x
  73. Reith S, Battermann S, Jaskolka A, et al. Relationship between optical coherence tomography derived intraluminal and intramural criteria and haemodynamic relevance as determined by fractional flow reserve in intermediate coronary stenoses of patients with type 2 diabetes. Heart 2013;99:700-7. https://doi.org/10.1136/heartjnl-2013-303616
  74. Madder RD, Goldstein JA, Madden SP, et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2013;6:838-46. https://doi.org/10.1016/j.jcin.2013.04.012